APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (2): 326-332    DOI: 10.1007/s11770-016-0558-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
强各向异性介质的微地震数据反演的陷阱
Sergey Yaskevich1,2, Georgy Loginov1,2, Anton Duchkov1,2, Alexandr Serdukov1,2
1. Novosibirsk State University, Novosibirsk 630090, Russia
2. Trofimuk Institute of Petroleum Geology and Geophysics of Siberian Branch Russian Academy of Sciences, Novosibirsk 630090, Russia)
Pitfalls of microseismic data inversion in the case of strong anisotropy
Sergey Yaskevich1,2, Georgy Loginov1,2, Anton Duchkov1,2, Alexandr Serdukov1,2
1. Novosibirsk State University, Novosibirsk 630090, Russia
2. Trofimuk Institute of Petroleum Geology and Geophysics of Siberian Branch Russian Academy of Sciences, Novosibirsk 630090, Russia)
 全文: PDF (305 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在井下微震监测中,各向异性模型用来获取事件位置和给出对介质实际描是十分有用的。在各向异性介质中,因为横波的分裂和奇异点的出现, 使得波场的结构变得复杂。我们的研究展示了对强烈各向异性VTI介质利用速度模型校准和双偶极震源进行常规处理和运动学反演的结果。 因小走时的拟合差,常用的质量评价标准,不是总正确的,人工加入各向同性介质层以降低拟合差,也可能产生非物理模型,负泊松比,事件位置的位移
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词微震监测   各向异性   定位质量     
Abstract: In downhole microseismic monitoring, anisotropic models are presently useful for obtaining the locations of events and give realistic description of the media. In anisotropic media, the wavefield structure is complex because of shear-wave splitting and singularities. We show the results of conventional processing and kinematic inversion using velocity model calibrations for strongly anisotropic VTI media and double-couple seismic sources. The small traveltime misfits, typical quality assessment criteria, are not always accurate. The artificial addition of isotropic layers may reduce the misfit but it may also produce nonphysical model, negative Poisson ratios, shifted locations.
Key wordsmicroseismic monitoring   anisotropy   location quality   
收稿日期: 2016-01-18;
引用本文:   
. 强各向异性介质的微地震数据反演的陷阱[J]. 应用地球物理, 2016, 13(2): 326-332.
. Pitfalls of microseismic data inversion in the case of strong anisotropy[J]. APPLIED GEOPHYSICS, 2016, 13(2): 326-332.
 
[1] Abel, J. S., Coffin, S., Hur, Y., and Taylor, S., 2011, An analytic model for microseismic event location estimate accuracy: First Break, 29, 99-107.
[2] Bohlen, T., 2002, Parallel 3-d viscoelastic finite difference seismic modeling: Computers & Geosciences, 28, 887-899.
[3] Chmiel, M., and Bardainne, T., 2014, Tomography of a velocity model and location of microseismic events with p, sv and sh waves: 76th EAGE Annual Meeting, Expanded Abstracts, Th E108 15.
[4] De Meersman, K., Van Der Baan, M., and Kendall, J. M., 2006, Signal extraction and auto- mated polarization analysis of multicomponent array data: Bulletin of the Seismological Society of America, 96, 2415-2430.
[5] Drew, J., Primiero, P., Brook, K., Raymer, D., Probert, A., Kim, A., Leslie, D. et al., 2012, Microseismic monitoring field test using surface, shallow grid and downhole arrays: 82th SEG Annual International Meeting, Expanded Abstracts, 1-5.
[6] Duncan, P. M., and Eisner, L., 2010, Reservoir characterization using surface microseismic monitoring: Geophysics, 75, 75A139-75A146.
[7] Eisner, L., Duncan, P. M., Heigl, W. M., and Keller, W. R., 2009, Uncertainties in passive seismic monitoring: The Leading Edge, 28, 648-655.
[8] Gajewski, D., 1993, Radiation from point sources in general anisotropic media: Geophysical Journal International, 113, 299-317.
[9] Gorshkalev, S., Karsten, V., Lebedev, K., Trigubov, A., and Volkov, G., 2004, Polarization pro- cessing of ps waves for estimation of anisotropy of fractured reservoirs in the yurubchen- tokhomo petroleum province: Testing new algorithm: Geologiyai Geofizika, 45, 760-773.
[10] Grechka, V., and Duchkov, A. A., 2011, Narrow-angle representations of the phase and group velocities and their applications in anisotropic velocity-model building for microseismic monitoring: Geophysics, 76, WC127-WC142.
[11] Grechka, V., and Yaskevich, S., 2013, Inversion of microseismic data for triclinic velocity models. Geophysical Prospecting, 61(6), 1159-1170.
[12] Grechka, V., and Yaskevich, S., 2014, Azimuthal anisotropy in microseismic monitoring: A bakken case study: Geophysics, 79, KS1-KS12.
[13] Majer, E. L., Baria, R., Stark, M., Oates, S., Bommer, J., Smith, B., and Asanuma, H., 2007, Induced seismicity associated with enhanced geothermal systems: Geothermics, 36, 185-222.
[14] Martínez-Garzón, P., Bohnhoff, M., Kwiatek, G., Zambrano-Narváez, G., and Chalaturnyk, R., 2013, Microseismic monitoring of CO2 injection at the penn west enhanced oil recovery pilot project, canada: Implications for detection of wellbore leakage: Sensors, 13, 11522-11538.
[15] Maxwell, S., 2010, Microseismic: Growth born from success: The Leading Edge, 29, 338-343.
[16] Rutledge, J. T., and Phillips, W. S., 2003, Hydraulic stimulation of natural fractures as revealed by induced microearthquakes, carthage cotton valley gas field, east Texas: Geophysics, 68, 441-452.
[17] Song, F., and Toksöz, M. N., 2011, Full-waveform based complete moment tensor inver- sion and source parameter estimation from downhole microseismic data for hydrofracture monitoring: Geophysics, 76, WC103-WC116.
[18] Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954-1966.
[19] Verdon, J. P., and Kendall, J. -M., 2011, Detection of multiple fracture sets using observations of shear-wave splitting in microseismic data: Geophysical Prospecting, 59, 593-608.
[20] Virieux, J., 1986, P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method: Geophysics, 51, 889-901.
[21] Withers, R. J., Zinno, R., and Dart, R., 1998, Siesmic imaging of cotton valley hydraulic fractures: 68th SEG Annual International Meeting, Expanded Abstracts, 968-971.
[22] Yang, R. Z., Zhao, Z. G., Peng, W. J., Gu, Y. B., Wang, Z. G., and Zhuang, X. Q., 2013. Integrated application of 3D seismic and microseismic data in the development of tight gas reservoirs.Applied Geophysics,10(2), 157-169.
[23] Zhang, H. J., Sarkar, S., Toksöz, M. N., Kuleli, H. S., and Al-Kindy, F., 2009, Passive seismic tomography using induced seismicity at a petroleum field in oman: Geophysics, 74, WCB57-WCB69.
[1] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[2] 郭桂红,闫建萍,张智,José Badal,程建武,石双虎,马亚维. 流体饱和孔隙定向裂缝储层中地震波衰减的模拟分析[J]. 应用地球物理, 2018, 15(2): 311-317.
[3] 闫丽丽,程冰洁,徐天吉,江莹莹,马昭军,唐建明. HTI介质PS波叠前偏移及各向异性校正方法应用研究[J]. 应用地球物理, 2018, 15(1): 57-68.
[4] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[5] 钱恪然,何治亮,陈业全,刘喜武,李向阳. 各向异性富有机质页岩的岩石物理建模及脆性指数研究[J]. 应用地球物理, 2017, 14(4): 463-480.
[6] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
[7] 黄鑫,殷长春,曹晓月,刘云鹤,张博,蔡晶. 基于谱元法三维航空电磁电各向异性模拟及识别研究[J]. 应用地球物理, 2017, 14(3): 419-430.
[8] 苏本玉,岳建华. 煤层导水裂缝带电各向异性特征研究[J]. 应用地球物理, 2017, 14(2): 216-224.
[9] 方刚,巴晶,刘欣欣,祝堃,刘国昌. 基于时间辛格式的傅里叶有限差分地震波场正演[J]. 应用地球物理, 2017, 14(2): 258-269.
[10] 宋连腾,刘忠华,周灿灿,俞军,修立军,孙中春,张海涛. 致密砂岩弹性各向异性特征及影响因素分析[J]. 应用地球物理, 2017, 14(1): 10-20.
[11] 刘喜武,郭智奇,刘财,刘宇巍. 四川盆地龙马溪组页岩气储层各向异性岩石物理建模及应用[J]. 应用地球物理, 2017, 14(1): 21-30.
[12] 何怡原,胡天跃,何川,谭玉阳. TI介质中的P波衰减各向异性及其在裂缝参数反演中的应用[J]. 应用地球物理, 2016, 13(4): 649-657.
[13] 郭智奇,刘财,刘喜武,董宁,刘宇巍. 基于岩石物理模型的页岩油储层各向异性研究[J]. 应用地球物理, 2016, 13(2): 382-392.
[14] 殷长春,张平,蔡晶. 海洋直流电阻率法各向异性正演模拟研究[J]. 应用地球物理, 2016, 13(2): 279-287.
[15] 李生杰, 邵雨, 陈旭强. 碳酸盐岩储层各向异性岩石物理建模与孔隙结构分析[J]. 应用地球物理, 2016, 13(1): 166-178.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司