Anisotropic rock physics models for interpreting pore structures in carbonate reservoirs
Li Sheng-Jie1,2, Shao Yu3, and Chen Xu-Qiang1,2
1. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China.
2. CNPC Key Lab of China University of Petroleum (Beijing), Beijing 102249, China.
3. Research Institute of Exploration and Development, Xinjiang Oilfield, PetroChina, Karamay, Xinjiang 83400, China.
Abstract:
We developed an anisotropic effective theoretical model for modeling the elastic behavior of anisotropic carbonate reservoirs by combining the anisotropic self-consistent approximation and differential effective medium models. By analyzing the measured data from carbonate samples in the TL area, a carbonate pore-structure model for estimating the elastic parameters of carbonate rocks is proposed, which is a prerequisite in the analysis of carbonate reservoirs. A workflow for determining elastic properties of carbonate reservoirs is established in terms of the anisotropic effective theoretical model and the pore-structure model. We performed numerical experiments and compared the theoretical prediction and measured data. The result of the comparison suggests that the proposed anisotropic effective theoretical model can account for the relation between velocity and porosity in carbonate reservoirs. The model forms the basis for developing new tools for predicting and evaluating the properties of carbonate reservoirs.
Li Sheng-Jie,Shao Yu,Chen Xu-Qiang. Anisotropic rock physics models for interpreting pore structures in carbonate reservoirs[J]. APPLIED GEOPHYSICS, 2016, 13(1): 166-178.
[1]
Agersborg, R. T., Hohansen, A., and Jakobsen, M., 2005, The T-matrix approach for carbonate rocks: 75th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1597-1600.
[2]
Anselmetti, F., and Ebrili, G. P., 1999, The velocity-deviation log: A tool to predict pore type and permeability trends in carbonate drill holes from sonic and porosity or density log: AAPG Bulletin, 83(3), 450-466.
[3]
Asseffa, S., McCann, C., and Sothcott, J., 2003, Velocity of compressional and shear waves in limestones: Geophysical Prospecting, 51(1), 1-13.
[4]
Brown, R., and Korringa, I., 1975, On the dependence of elastic properties of a porous rock on the compressibility of the pore fluid: Geophysics, 40(4), 608-616.
[5]
Budiansky, B., 1965, On the elastic moduli of some heterogeneous materials: J. Mech. Phys. Solid, 13(4), 223-227.
[6]
Carcione, J. M., and Avseth, P., 2015, Rock-physics templates for clay-rich source rocks: Geophysics, 80(5), D480-500.
[7]
Castagna, J., Batzle, M., and Eastwood, R., 1985, Relationships between compressional-wave and shear-wave velocity in clastic silicate rocks: Geophysics, 50(4), 571-581.
[8]
Choquette, P. W., and Pray, L. C., 1970, Geologic nomenclature and classification of porosity in sedimentary carbonates: AAPG Bulletin, 54(2), 207-244.
[9]
Christensen, R. M., 2005, Mechanics of composite materials: Wiley, New York, 31-71.
[10]
Dunham, R. J., 1962, Classification of carbonate rocks according to depositional texture: AAPG Bulletin, 46(1), 108-121.
[11]
Eberli, G. P., Baechle, G., Anselmetti, F., Incze, M., Dong, W., Tura, A., and Saparkman, G., 2003, Factors controlling elastic properties in carbonate sediments and rocks: The Leading Edge, 22(7), 654-660.
[12]
Eshelby, J. D., 1957, The determination of the elastic field of an ellipsoidal inclusion, and related problem: Proc. Roy. Soc, A241(1226), 376-396.
[13]
Hornby, B. E., Schwartz, M., and Hundson, A., 1994, Anisotropic effective-medium modeling of the elastic properties of shales: Geophysics, 59(10), 1570-1583.
[14]
Huang, H., Stewart, R. R., Sil, S., and Dyaur, N., 2015, Fluid substitution effect on seismic anisotropy: J. Geophys. Res, 120(2), 850-863.
[15]
Hudson, J. A., 1980, Overall properties of a cracked soild: Mathematical Proceedings of the Cambridge Philosophical Society, 88(2), 371-384.
[16]
Keys R. G., and Xu, S., 2002, An approximation for the Xu-White velocity model. Geophysics, 67(5), 1406-1414.
[17]
Krief, M., Garat, J., Stellingwerff, J., and Ventre, J., 1990, A petrophysical interpretation using the velocities of P and S waves (full waveform sonic): The Log Analyst, 31(6), 355-369.
[18]
Kumar M., and Han, De-hua, 2005, Pore shape effect on elastic properties of carbonate rocks: 75th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, RP1.3, 1477-1480.
[19]
Kuster, G. T., and Toksoz, M. N., 1974, Velocity and attenuation of seismic waves in two-phase media:Part I: Theoretical formulations: Geophysics, 39(5), 587-606.
[20]
Landro, M., 2015, Aspect ratio histograms of 3D ellipsoids and 2D ellipses—Analytical relations and numerical examples: Geophysics, 80(2), D429-D440.
[21]
Li, J. Y., and Chen, X. H., 2013, A rock-physical modeling method for carbonate reservoirs at seismic scale: Appl. Geophys., 10(1), 1-13.
[22]
Lucia, F. J., 1995, Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization: AAPG Bulletin, 79(9), 1275-1300.
[23]
Mavko, G., Mukerkji T., and Dvorkin, J., 2001, The rock physics handbook: Tools for seismic analysis inporous media: Cambridge University Press, New York, 169-224.
[24]
Regnet, J. B., Robion, P., David, C., Fortin, J., Brigaud, B., and Yven B., 2015, Acoustic and reservoir properties of microporous carbonate rocks: Implication of micrite particle size and morphology, J. Geophys. Res, 120, 790-811.
[25]
Walpole, L. J., 1969, On overall elastic moduli of composite materials: J. Mech. Phys. Sol., 17(4), 235-251
[26]
Weger, R. J., Baechle, G. T., Masaferro, J. L., and Everli. G. P., 2004, Effect of porestructure on sonic velocity in carbonate: 74th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1774-1777.
[27]
Willis, J. R., 1977, Bounds and self-consistent estimates for the overall properties of anisotropic composites: J. Mech. Phys. Solids, 25(3), 185-202.
[28]
Xu S., and Payne, M. A., 2009, Modeling elastic Properties in carbonate rocks: The Leading Edge, 28(1), 66-74.
[29]
Xu, S., and White, R. E., 1995, A new velocity model for shear-wave velocity prediction: Geophysical Prospecting, 43(1), 91-118.
[30]
Yu, H., Ba, J., Carcione, J., Li, J. S., Tang, G., Zhang, X. Y., He, Z. H., and Ouyang, H., 2014, Rock physics modeling of heterogeneous carbonate reservoirs: porosity estimation and hydrocarbon detection: Appl. Geophys., 11(1), 9-22.