APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (1): 156-165    DOI: 10.1007/s11770-016-0528-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
中观局域流过渡频率及其与衰减峰值频率的联系研究
曹呈浩,张宏兵,潘益鑫,滕新保
河海大学地球科学与工程学院,南京 211100
Relationship between the transition frequency of local fluid flow and the peak frequency of attenuation
Cao Cheng-Hao1, Zhang Hong-Bing1, Pan Yi-Xin1, and Teng Xin-Bao1
1. College of Earth Science and Engineering, Hohai University, Nanjing 211100, China.
 全文: PDF (784 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在地震频段内,中观尺度局域流是引起孔隙岩层速度频散与衰减的主要原因,局域流很容易受到边界和内部结构的影响,进而影响衰减峰值频率的变化,而对应的局域流过渡频率则可以有效的反应局域流的变化趋势,因此研究中观尺度孔隙中局域流的过渡频率及其对应的衰减(逆品质因子)峰值频率之间的关系,有助于深入分析孔隙介质内部构造和边界条件所产生的影响。首先基于Biot孔隙弹性理论得出时间域内局域流流体通量,引入傅立叶变换得到频域上的流体通量。其次,针对不同孔隙介质参数,分析了局域流整体过渡频率及相应的衰减峰值频率的变化特征。最后,将研究拓展到在多重单元体模型中,分析不排水边界对局域流过渡频率和衰减峰值频率的影响,这有助于促进对不排水边界影响的研究。数值模拟结果表明,在低饱和度状态下,两种频率的变化趋势相同,但随着饱和度的增加,变化幅度存在较大差异;在高饱和度状态下,两种频率的变化趋势与变化幅度都很接近。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹呈浩
张宏兵
潘益鑫
滕新保
关键词局域流   峰值频率   过渡频率   饱和度   边界条件     
Abstract: Local fluid flow (LFF) at the mesoscopic scale is the main dissipation mechanism of seismic waves in heterogeneous porous media within the seismic frequency band. LFF is easily influenced by the structure and boundary conditions of the porous media, which leads to different behaviors of the peak frequency of attenuation. The associated transition frequency can provide detailed information about the trend of LFF; therefore, research on the transition frequency of LFF and its relationship with the peak frequency of the corresponding attenuation (i.e., inverse of quality factor) facilitates the detailed understanding of the effect of inner structures and boundary conditions in porous media. In this study, we firstly obtain the transition frequency of fluid flux based on Biot’s theory of poroelasticity and the fast Fourier transform algorithm in a sample containing one repeating unit cell (RUC). We then analyze changes of these two frequencies in porous media with different porous properties. Finally, we extend our analysis to the influence of the undrained boundary condition on the transition frequency and peak frequency in porous media with multiple RUCs. This setup can facilitate the understanding of the effect from the undrained boundary condition. Results demonstrate that these two frequencies have the same trend at low water saturation, but amplitude variations differ between the frequencies as the amount of saturation increases. However, for cases of high water saturation, both the trend and the amplitude variation of these two frequencies fit well with each other.
Key wordsLocal fluid flow   peak frequency   transition frequency   saturation   boundary condition   
收稿日期: 2015-06-20;
基金资助:

本研究由国家自然科学基金(编号:41374116)和中央高校基本科研业务费专项资金(编号:2014B39014)联合资助。

引用本文:   
曹呈浩,张宏兵,潘益鑫等. 中观局域流过渡频率及其与衰减峰值频率的联系研究[J]. 应用地球物理, 2016, 13(1): 156-165.
CAO Cheng-Hao,ZHANG Hong-Bing,PAN Yi-Xin et al. Relationship between the transition frequency of local fluid flow and the peak frequency of attenuation[J]. APPLIED GEOPHYSICS, 2016, 13(1): 156-165.
 
[1] Aki, K., and Richards, G. P., 1980, Quantitative seismology: Theory and methods: W. H. Freeman, 162−163.
[2] Ba, J., 2013, Progress and Review of Rock Physics, Tsinghua University Press, 150−212.
[3] Ba, J., Carcione, J. M., and Nie, J. X., 2011, Biot-Rayleigh theory of wave propagation in double-porosity media: Journal of Geophysical Research Atmospheres, 116(B6), 309-311.
[4] Brajanovski, M., Gurevich, B., and Schoenberg, M., 2005, A model for P-wave attenuation and dispersion in a porous medium permeated by aligned fractures: Geophysical Journal International, 163(1), 372−384.
[5] Brajanovski, M., Müller, T. M., and Gurevich, B., 2006, Characteristic frequencies of seismic attenuation due to wave-induced fluid flow in fractured porous media: Geophysical Journal International, 166(2), 574−578.
[6] Carcione, J.M., and Picotti, S., 2006, P-wave seismic attenuation by slow-wave diffusion: Effects of inhomogeneous rock properties: Geophysics, 71(3), O1− O8.
[7] Deng, J. X., Wang, S. X., and Du, W., 2012, A study of the influence of mesoscopic pore fluid flow on the propagation properties of compressional wave-a case of periodic layered porous media: Chinese Journal of Geophysics (in Chinese), 55(8), 2716−2727.
[8] Gelinsky, S., Shapiro, S. A., Muller, T., and Gurevich, B., 1998, Dynamic poroelasticity of thinly layered structures. International Journal of Solids and Structures, 35(34−35), 4739−4751.
[9] Goertz, D., and Knight, R., 1998, Elastic wave velocities during evaporative drying: Geophysics, 63(1), 171-183.
[10] Guerriero, V., Mazzoli, S., Iannace, A., Vitale, S., Carravetta, A., and Strauss, C., 2013, A permeability model for naturally fractured carbonate reservoirs: Marine and Petroleum Geology, 40, 115−134.
[11] Kong, L., Gurevich, B., Muller, T.M., Wang, Y., and Yang, H., 2013, Effect of fracture fill on seismic attenuation and dispersion in fractured porous rocks: Geophysical Journal International, 195(3), 1679−1688.
[12] Kudarova, A. M., van Dalen, K. N., and Drijkoningen, G. G., 2013, Effective poroelastic model for one-dimensional wave propagation in periodically layered media: Geophysical Journal International, 195(2), 1337−1350.
[13] Liu, J., Ma, J. W., and Yang, H. Z., 2009, Research on dispersion and attenuation of P wave in periodic layered-model with patchy saturation: Chinese Journal of Geophysics (in Chinese), 52(11), 2879-2885.
[14] Müller, T.M., Gurevich, B., and Lebedev, M., 2010, Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks-A review: Geophysics, 75(5), 75A147−75A164.
[15] Müller, T.M., and Rothert, E., 2006, Seismic attenuation due to wave-induced flow: Why Q in random structures scales differently: Geophysical Research Letters, 33(16), L16305.
[16] Masson, Y.J., Pride, S.R., and Nihei, K.T., 2006, Finite difference modeling of Biot’s poroelastic equations at seismic frequencies: Journal of Geophysical Research-Solid Earth, 111(B10).
[17] Mavko, G., 2013, Relaxation shift in rocks containing viscoelastic pore fluids: Geophysics, 78(3), M19-M28.
[18] Mavko, G., Mukerji, T., and Dvorkin, J., 2009, The Rock Physics Handbook, Second Edition, Cambridge University Press, 389-394.
[19] Milani, M., Rubino, J. G., Quintal, B., Holliger, K., and Muller, T. M., 2014, Velocity and attenuation characteristics of P-waves in periodically fractured media as inferred from numerical creep and relaxation tests: 84th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2882−2887.
[20] Picotti, S., Carcione, J.M., Rubino, J.G., Santos, J.E., and Cavallini, F., 2010, A viscoelastic representation of wave attenuation in porous media: Computers & Geosciences, 36(1), 44−53.
[21] Quintal, B., 2012, Frequency-dependent attenuation as a potential indicator of oil saturation: Journal of Applied Geophysics, 82, 119-128.
[22] Quintal, B., Jänicke, R., Rubino, J., Steeb, H., and Holliger, K., 2014, Sensitivity of S-wave attenuation to the connectivity of fractures in fluid-saturated rocks: Geophysics, 79(5), WB15-WB24.
[23] Quintal, B., Steeb, H., Frehner, M., and Schmalholz, S.M., 2011, Quasi-static finite element modeling of seismic attenuation and dispersion due to wave-induced fluid flow in poroelastic media: Journal of Geophysical Research, 116(B1).
[24] Quintal, B., Steeb, H., Frehner, M., Schmalholz, S. M. and Saenger, E. H., 2012, Pore fluid effects on S-wave attenuation caused by wave-induced fluid flow: Geophysics, 77(3), L13-L23.
[25] Rubino, J. G., Holliger, K., Guarracino, L., Milani, M., and Müller, T. M., 2014, Can we use seismic waves to detect hydraulic connectivity between fractures: 84th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2894-2898.
[26] Rubino, J. G., Monachesi, L. B., Müller, T. M., Guarracino, L., and Holliger, K., 2013, Seismic wave attenuation and dispersion due to wave-induced fluid flow in rocks with strong permeability fluctuations: The Journal of the Acoustical Society of America, 134(6), 4742-4751.
[27] Rubino, J. G., Ravazzoli, C. L., and Santos, J.E., 2009, Equivalent viscoelastic solids for heterogeneous fluid-saturated porous rocks: Geophysics, 74(1), N1-N13.
[28] Solazzi, S., Guarracino, L., Germán Rubino, J., Milani, M., Holliger, K., and Müller, T., 2014, An energy-based approach to estimate seismic attenuation due to wave-induced fluid flow: 84th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1991-1995.
[29] Stephen, R. A., 2009, Viscoelastic Waves in Layered Media: Journal of the Acoustical Society of America, 126(6), 3374-3375.
[30] Tisato, N., and Quintal, B., 2013, Measurements of seismic attenuation and transient fluid pressure in partially saturated Berea sandstone: evidence of fluid flow on the mesoscopic scale: Geophysical Journal International, 195(1), 342-351.
[31] Vogelaar, B., and Smeulders, D., 2007, Extension of White’s layered model to the full frequency range: Geophysical Prospecting, 55(5), 685-695.
[32] Wang, S. D., 2011, Attenuation compensation method based on inversion: Applied Geophysics, 8(2), 150-157.
[33] White, J., 1975, Computed seismic speeds and attenuation in rocks with partial gas saturation: Geophysics, 40(2), 224-232.
[34] White, J. E., Mihailova, N., and Lyakhovitsky, F., 1975, Low-frequency seismic waves in fluid-saturated layered rocks: Journal of the Acoustical Society of America, 57(S1), S30-S30.
[35] Zener, C. M., and Siegel, S., 1949, Elasticity and Anelasticity of Metals: The Journal of Physical and Colloid Chemistry, 53(9), 1468-1468.
[1] 李诺, 陈浩, 张秀梅, 韩建强, 王健, 王秀明. 岩石基质模量与临界孔隙度的联合预测方法*[J]. 应用地球物理, 2019, 16(1): 15-26.
[2] 马霄一,王尚旭,赵建国,殷晗钧,赵立明. 部分饱和条件下砂岩的速度频散实验室测量和Gassmann流体替换[J]. 应用地球物理, 2018, 15(2): 188-196.
[3] 段茜,刘向君. 气水两相裂缝型介质孔隙流体微观分布模式及其声学响应特性[J]. 应用地球物理, 2018, 15(2): 311-317.
[4] 刘鑫,刘洋,任志明,蔡晓慧,李备,徐世刚,周乐凯. 三维弹性波正演模拟中的混合吸收边界条件[J]. 应用地球物理, 2017, 14(2): 270-278.
[5] 张建敏,何兵寿,唐怀谷. 三维TTI介质中的纯准P波方程及求解方法[J]. 应用地球物理, 2017, 14(1): 125-132.
[6] 马劲风,李琳,王浩璠,谭明友,崔世凌,张云银,曲志鹏,贾凌云,张树海. CO2地质封存地球物理监测技术[J]. 应用地球物理, 2016, 13(2): 288-306.
[7] 张钱江, 戴世坤, 陈龙伟, 李昆, 赵东东, 黄兴兴. 起伏地形条件下二维声波频率域全波形反演[J]. 应用地球物理, 2015, 12(3): 378-388.
[8] 张如伟, 李洪奇, 张宝金, 黄捍东, 文鹏飞. 基于叠前地震AVA反演的天然气水合物沉积物识别[J]. 应用地球物理, 2015, 12(3): 453-464.
[9] 刘洋, 李向阳, 陈双全. 高精度双吸收边界条件在地震波场模拟中的应用[J]. 应用地球物理, 2015, 12(1): 111-119.
[10] 孙文杰, 李宁, 武宏亮, 王克文, 张宫. 孔洞型储层测井饱和度解释方程的确定及应用[J]. 应用地球物理, 2014, 11(3): 257-268.
[11] 李雄炎, 秦瑞宝, 刘春成, 毛志强. 基于岩石导电效率建立碳酸盐岩储层饱和度的计算方法[J]. 应用地球物理, 2014, 11(2): 215-222.
[12] 于豪, 巴晶, Carcione Jose, 李劲松, 唐刚, 张兴阳, 何新贞, 欧阳华. 非均质碳酸盐岩储层岩石物理建模:孔隙度估算与烃类检测[J]. 应用地球物理, 2014, 11(1): 9-22.
[13] 赵建国, 史瑞其. 时域有限元弹性波模拟中的位移格式完全匹配层吸收边界[J]. 应用地球物理, 2013, 10(3): 323-336.
[14] 常锁亮, 刘洋. 结合边界条件的截断高阶隐式有限差分方法[J]. 应用地球物理, 2013, 10(1): 53-62.
[15] 聂建新, 巴晶, 杨顶辉, 晏信飞, 袁振宇, 乔海鹏. 基于Kelvin-Voigt黏弹性骨架的含非饱和流体孔隙介质BISQ模型[J]. 应用地球物理, 2012, 9(2): 213-222.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司