APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (1): 179-193    DOI: 10.1007/s11770-016-0547-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
低流速高含水油水两相流超声传感器持水率测量特性
赵安,韩云峰,任英玉,翟路生,金宁德
天津大学电气与自动化工程学院,天津 300072
Ultrasonic method for measuring water holdup of low velocity and high-water-cut oil-water two-phase flow
Zhao An1, Han Yun-Feng1, Ren Ying-Yu1, Zhai Lu-Sheng1, and Jin Ning-De1
1. School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China.
 全文: PDF (1653 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 国内陆上处于中晚期开采的低孔低渗油藏已进入高含水生产状态,其井筒内油水两相流分散相(油滴)局部流速及浓度呈严重的非均匀流动剖面特性,致使油井持水率检测难度很大。本文采用脉冲透射式的超声传感器对低流速高含水油水两相流持水率进行测量。首先,使用多物理场耦合有限元法计算超声场灵敏度分布,对超声传感器激励频率进行了优化。通过计算不同持油率下声压级衰减率,对超声传感器直径的适用性进行了考察。在此基础上,研究了油滴直径及分布对超声传感器声场分布特性的影响。为验证优化后的超声传感器测量特性,搭建了低流速高含水垂直上升油水两相流流动环试验装置,并获取了超声传感器持水率输出响应特性。结果发现超声传感器对水包油段塞流(D OS/W)的测量分辨率较差,但对水包油泡状流(D O/W)和水包油细小泡状流(VFD O/W)具有较好的分辨率。研究表明脉冲透射式超声法对低流速高含水油水两相流持水率测量存在潜在的应用价值。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵安
韩云峰
任英玉
翟路生
金宁德
关键词油水两相流   低流速   高含水   超声传感器   持水率     
Abstract: Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China’s onshore oil fields are mostly in the high-water-cut production stage. This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration (of oil droplets) in oil-water two-phase flow, which makes it difficult to measure water holdup in oil wells. In this study, we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in low-velocity and high water-cut conditions. First, we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling. Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor. Based on the results, we then investigate the effects of oil-droplet diameter and distribution on the ultrasonic field. To further understand the measurement characteristics of the ultrasonic sensor, we perform a flow loop test on vertical upward oil-water two-phase flow and measure the responses of the optimized ultrasonic sensor. The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow (D OS/W flow), but the resolution is favorable for dispersed oil in water flow (D O/W flow) and very fine dispersed oil in water flow (VFD O/W flow). This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.
Key wordsOil-water two-phase flow   low mixture velocity   high water cut   ultrasonic sensor   water holdup   
收稿日期: 2015-12-12;
基金资助:

本研究由国家自然科学基金项目(编号:51527805,11572220和41174109)资助。

引用本文:   
赵安,韩云峰,任英玉等. 低流速高含水油水两相流超声传感器持水率测量特性[J]. 应用地球物理, 2016, 13(1): 179-193.
Zhao An,Han Yun-Feng,Ren Ying-Yu et al. Ultrasonic method for measuring water holdup of low velocity and high-water-cut oil-water two-phase flow[J]. APPLIED GEOPHYSICS, 2016, 13(1): 179-193.
 
[1] Al-Lababidi, S., Addali, A., Yeung, H., Mba, D., and Khan, F., 2009, Gas void fraction measurement in two-phase gas/liquid slug flow using acoustic emission technology: Journal of Vibration & Acoustics, 131(6), 1747−1750.
[2] Carvalho, R. D. M., Venturini, O. J., Tanahashi, E. I., Neves, Jr. F., and Franca, F. A., 2009, Application of the ultrasonic technique and high-speed filming for the study of the structure of air-water bubbly flows: Experimental Thermal & Fluidence, 33(7), 1065−1086.
[3] Chaudhuri, A., Osterhoudt, C. F., and Sinha, D. N., 2012, An algorithm for determining volume fractions in two-phase liquid flows by measuring sound speed: Journal of Fluids Engineering, 134(10), 101301.
[4] Chaudhuri, A., Sinha, D. N., Zalte, A., Pereyra, E., Webb, C., and Gonzalez, M., 2014, Mass fraction measurements in controlled oil-water flows using noninvasive ultrasonic sensors: Journal of Fluids Engineering, 136(3), 031304.
[5] Cong, J. S., Wang, X. M., Chen, D. H., Xu, D. L., Che, C. X., and Ma, S. L., 2008, Gas detection in a gas-liquid flow using an acoustic resonance spectroscopy method: Chinese Journal of Geophysics, 51(1), 280−284.
[6] Dong, X., Tan, C., Yuan, Y., and Dong, F., 2015, Oil-water two-phase flow velocity measurement with continuous wave ultrasound Doppler: Chemical Engineering Science, 135, 155−165.
[7] Hall, L., 1948, The origin of ultrasonic absorption in water: Physical Review, 73(7), 775−781.
[8] Kirchhoff, G., 1868, Ueber den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung: Annalen der Physik, 210(6), 177−193.
[9] Liu, J. C., Liu, X. B., Zhuang, H. J., and Yuan, Z. H., 2005, Experiments of ultrasonic holdup measurement for non packer water oil two phase flow: Well Logging Technology (in Chinese), 29(5), 453−455.
[10] Meng, G., Jaworski, A. J., Dyakowski, T., Hale, J. M., and White, N. M., 2005, Design and testing of a thick-film dual-modality sensor for composition measurements in heterogeneous mixtures: Measurement Science & Technology, 16(4), 942−954.
[11] Meng, G., Jaworski, A. J., and White, N. M., 2006, Composition measurements of crude oil and process water emulsions using thick-film ultrasonic transducers: Chemical Engineering & Processing Process Intensification, 45(5), 383−391.
[12] Meribout, M., Al-Rawahi, N., Al-Naamany, A., Al-Bimani, A., Al-Busaidi, K., and Meribout, A., 2010, Integration of impedance measurements with acoustic measurements for accurate two phase flow metering in case of high water-cut: Flow Measurement & Instrumentation, 21(1), 8−19.
[13] Morriss, S. L., and Hill, A. D., 1993, Ultrasonic imaging and velocimetry in two-phase pipe flow: Journal of Energy Resources Technology, 115(2), 108−116.
[14] Murakawa, H., Kikura, H., and Aritomi, M., 2005, Application of ultrasonic doppler method for bubbly flow measurement using two ultrasonic frequencies: Experimental Thermal & Fluid Science, 29(7), 843−850.
[15] Murakawa, H., Kikura, H., and Aritomi, M., 2008, Application of ultrasonic multi-wave method for two-phase bubbly and slug flows: Flow Measurement & Instrumentation, 19(3−4), 205−213.
[16] Murai, Y., Tasaka, Y., Nambu, Y., Takeda, Y., and Gonzalez-A, S, R., 2010, Ultrasonic detection of moving interfaces in gas-liquid two-phase flow: Flow Measurement & Instrumentation, 21(3), 356−366.
[17] Ohkawa, W. M., Maezawa, A., and Uchida, S., 1997, Flow structure and phase distributions in a slurry bubble column: Chemical Engineering Science, 52(21−22), 3941−3947.
[18] Roosnek, N., 2000, Novel digital signal processing techniques for ultrasonic gas flow measurements: Flow Measurement & Instrumentation, 11(2), 89−99.
[19] Supardan, M. D., Masuda, Y., Maezawa, A., and Uchida, S., 2007, The investigation of gas holdup distribution in a two-phase bubble column using ultrasonic computed tomography: Chemical Engineering Journal, 130(2−3), 125−133.
[20] Su, M. X., Xue, M. H., Cai, X. S., Shang, Z. T., and Xu, F., 2008, Particle size characterization by ultrasonic attenuation spectra: Particuology, 6(4), 276−281.
[21] Su, M. X., Cai, X. S., Xue, M. H., Dong, L. L., and Xu, F., 2009, Particle sizing in dense two-phase droplet systems by ultrasonic attenuation and velocity spectra: Science in China, 52(6), 1502−1510.
[22] Wada, S., Kikura, H., and Aritomi, M., 2006, Pattern recognition and signal processing of ultrasonic echo signal on two-phase flow: Flow Measurement & Instrumentation, 17(4), 207−224.
[23] Xu, L. A., Leonard, D., and Green, R. G., 1985, A pulsed ultrasound transducer system for two component flow: Journal of Physics E: Scientific Instruments, 18(7), 609−613.
[24] Xu, L. J., Han, Y. T., Xu, L. A., and Yang, J. S., 1997, Application of ultrasonic tomography to monitoring gas/liquid flow: Chemical Engineering Science, 52(13), 2171−2183.
[25] Xu, X. M., 2003, Fundamentals of Acoustics: Science Press, Beijing, 236−256 (in Chinese).
[26] Zhai, L. S., Jin, N. D., Gao, Z. K., Wang, Z. Y., and Li, D. M., 2013, The ultrasonic measurement of high water volume fraction in dispersed oil-in-water flows: Chemical Engineering Science, 94, 271−283.
[27] Zheng, Y., and Zhang, Q. K., 2004, Simultaneous measurement of gas and solid holdups in multiphase systems using ultrasonic technique: Chemical Engineering Science, 59(17), 3505−3514.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司