APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (1): 80-92    DOI: 10.1007/s11770-016-0531-7
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
多尺度裂缝综合预测应用研究
陈双全1,2,曾联波1,黄平3,孙绍寒4,张琬璐1,2,李向阳1,2,5
1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
2. 中国石油大学(北京)CNPC物探重点实验室,北京 102249
3. 中国石油西南油气田研究院,成都 641500
4. 中石油东方地球物理公司研发中心,涿州 072751
5. 英国联邦地质调查局,爱丁堡 EH9 3AZ
The application study on the multi-scales integrated prediction method to fractured reservoir description
Chen Shuang-Quan1,2, Zeng Lian-Bo1, Huang Ping3, Sun Shao-Han4, Zhang Wan-Lu1,2, and Li Xiang-Yang1,2,5
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.
2. CNPC Key Laboratory of Geophysical Prospecting, China University of Petroleum, Beijing 102249, China.
3. Research Institute of CNPC Southwest Oil and Gas Field Branch, Chengdu 641500, China.
4. Geophysical Research Center, BGP, PetroChina, Zhuozhou 072751, China.
5. British Geological Survey, Edinburgh EH9 3AZ, U. K.
 全文: PDF (1650 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 裂缝预测在致密油气、煤层气、页岩气等非常规油气勘探中起着十分重要的作用。本文将裂缝分成大(大于1/4波长)、中(1/4~1/100波长)、小(远小于1/100波长)三种尺度类型开展综合预测研究。基于多尺度岩石物理正演模拟技术,分析区分中等尺度裂缝的叠前方位各向异性敏感属性,结合地质、测井和地震属性大尺度裂缝预测方法和岩心薄片观测小尺度裂缝预测,形成了一套综合地质岩心信息、成像测井解释和地震信息的多尺度裂缝综合预测方法。该方法通过岩心裂缝描述和成像测井解释,分析得到裂缝发育控制因素,再通过应力场构造模拟,完成区域性大尺度裂缝发育控制因素研究。利用叠后几何类属性进行大尺度裂缝预测,结合叠前衰减属性进行中等尺度裂缝预测,以及岩性统计学反演和断层叠合结果,验证中等尺度裂缝与岩性、断层的对应关系,明确了中尺度裂缝成因。通过岩心电镜扫描,分析小裂缝发育状况,最后综合三类裂缝研究成果分析储层裂缝发育状况。通过对某实际工区灰岩储层的裂缝发育情况进行综合预测研究,结果表明文中提出的多尺度裂缝预测基础理论方法和多尺度裂缝预测技术流程,能够较好地解决裂缝预测的强非均质性、多尺度问题,综合地质、测井和地震多信息裂缝多尺度预测技术能够实现裂缝性油气藏的储层描述和甜点预测。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈双全
曾联波
黄平
孙绍寒
张琬璐
李向阳
关键词多尺度   裂缝预测   非均质   储层描述   甜点预测     
Abstract: In this paper, we implement three scales of fracture integrated prediction study by classifying it to macro- (> 1/4λ), meso- (> 1/100λ and < 1/4λ) and micro- (< 1/100λ)  scales. Based on the multi-scales rock physics modelling technique, the seismic azimuthal anisotropy characteristic is analyzed for distinguishing the fractures of meso-scale. Furthermore, by integrating geological core fracture description, image well-logging fracture interpretation, seismic attributes macro-scale fracture prediction and core slice micro-scale fracture characterization, an comprehensive multi-scale fracture prediction methodology and technique workflow are proposed by using geology, well-logging and seismic multi-attributes. Firstly, utilizing the geology core slice observation (Fractures description) and image well-logging data interpretation results, the main governing factors of fracture development are obtained, and then the control factors of the development of regional macro-scale fractures are carried out via modelling of the tectonic stress field. For the meso-scale fracture description, the poststack geometric attributes are used to describe the macro-scale fracture as well, the prestack attenuation seismic attribute is used to predict the meso-scale fracture. Finally, by combining lithological statistic inversion with superposed results of faults, the relationship of the meso-scale fractures, lithology and faults can be reasonably interpreted and the cause of meso-scale fractures can be verified. The micro-scale fracture description is mainly implemented by using the electron microscope scanning of cores. Therefore, the development of fractures in reservoirs is assessed by valuating three classes of fracture prediction results. An integrated fracture prediction application to a real field in Sichuan basin, where limestone reservoir fractures developed, is implemented. The application results in the study area indicates that the proposed multi-scales integrated fracture prediction method and the technique procedureare able to deal with the strong heterogeneity and multi-scales problems in fracture prediction. Moreover, the multi-scale fracture prediction technique integrated with geology, well-logging and seismic multi-information can help improve the reservoir characterization and sweet-spots prediction for the fractured hydrocarbon reservoirs.
Key wordsMulti-scales   Fracture prediction   Heterogeneity   Reservoir characterization   Sweet-spots prediction   
收稿日期: 2015-02-09;
基金资助:

本研究由国家油气重大专项课题(编号:2011ZX05019-008)和国家自然科学基金项目(编号:41574108和U1262208)联合资助。

引用本文:   
陈双全,曾联波,黄平等. 多尺度裂缝综合预测应用研究[J]. 应用地球物理, 2016, 13(1): 80-92.
Chen Shuang-Quan,Zeng Lian-Bo,Huang Ping et al. The application study on the multi-scales integrated prediction method to fractured reservoir description[J]. APPLIED GEOPHYSICS, 2016, 13(1): 80-92.
 
[1] Agersborg, R., Jakobsen, M., Ruud, B. O., and Johansen, T. A., 2007, Effects of pore fluid pressure on the seismic response of a fractured carbonate reservoir: Stud Geophys Geod, 51, 89−118.
[2] Aki, K., and Richards, P. G., 1980, Quantitative Seismology, Theory and Methods: W. H. Freeman and Co., San Francisco.
[3] Behura, J., Tsvankin, I., Jenner, E., and Calvert, A., 2012. Estimation of interval velocity and attenuation anisotropy from reflection data at Coronation Field: The Leading Edge, 31, 580−587.
[4] Chapman, M., 2003, Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity: Geophys Prospect, 51, 369−379.
[5] Chapman, M., 2009, Modeling the effect of multiple sets of mesoscale fractures in porous rock on frequency-dependent anisotropy: Geophysics, 74(6), D97-D103.
[6] Chen, S. Q., Li, X. -Y., and Wang, S. X., 2012, The analysis of frequency-dependent characteristics for fluid detection: a physical model experiment. Applied Geophysics, 9(2), 195−206.
[7] Chichinina, T., Sabinin, V., and Ronquillo-Jarillo, G., 2006, QVOA analysis: P-wave attenuation anisotropy for fracture characterization: Geophysics, 71, C37−48.
[8] Clark, R. A., Benson, P. M., Carter, A. J., and Moreno, C. A. G., 2009, Anisotropic P-wave attenuation measured from a multi-azimuth surface seismic reflection survey: Geophys Prospect, 57, 835−845.
[9] Hudson, J. A., 1981, Wave speeds and attenuation of elastic waves in material containing cracks:Geophysical Journal of the Royal Astronomical Society, 64, 133−150.
[10] Jakobsen, M., 2004, The interacting inclusion model of wave-induced fluid flow: Geophys J. Int, 158, 1168−1176.
[11] Jakobsen, M., and Chapman, M., 2009, Unified theory of global flow and squirt flow in cracked porous media: Geophysics, 74(2), WA65−WA76.
[12] Li, X. Y., Liu, Y. J., Liu, E., Shen, F., Li, Q., and Qu, S., 2003, Fracture detection using land 3D seismic data from the Yellow River Delta, China: The Leading Edge, 22, 680−683.
[13] Liu, E., Queen, J. H., Li, X. Y., Chapman, M., Maultzsch, S., Lynn, H. B., and Chesnokov, E. M., 2003, Observation and analysis of frequency-dependent anisotropy from a multicomponent VSP at Bluebell-Altamont field, Utah: J. Appl.Geophys, 54, 319−333.
[14] Liu, E., Chapman, M., Varela, I., Li, X., Queen, J. H., and Lynn, H., 2007, Velocity and attenuation anisotropy: Implication of seismic fracture characterizations: The Leading Edge, 26, 1170−1174.
[15] Liu, E., Zelewski, G., Lu, C., Reilly, J. M., and Shevchek, Z. J., 2011, Mitigation of overburden effects in fracture prediction using azimuthal AVO analysis: An example from a Middle East carbonate field: The Leading Edge, 30, 750−756.
[16] MacBeth, C., and Li, X., 1999, AVD: an emerging new marine technology for reservoir characterization; acquisition and application: Geophysics, 64, 1153−1159.
[17] Maultzsch, S., Chapman, M., Liu, E., and Li, X. Y., 2003, Modelling frequency-dependent seismic anisotropy in fluid-saturated rock with aligned fractures: implication of fracture size estimation from anisotropic measurements: Geophys Prospect, 51, 381−392.
[18] Maultzsch, S., Chapman M., Liu, E., and Li, X., 2007, Modelling and analysis of attenuation anisotropy in multi-azimuth VSP data from the Clair field: Geophys Prospect, 55, 627−642.
[19] Mavko, G., Mukerji, T., and Dvorkin, J., 2009, The rock physics handbook: tools for seismic analysis of porous media, 2nd ed.: Cambridge Press.
[20] Qian, Z., Li, X. Y., and Chapman, M., 2007, Azimuthal variations of PP- and PS-wave attributes: A synthetic study: 77th Ann. Internat. Mtg., SEG, Expanded Abstracts, 184−188.
[21] Rüger, A., and Tsvankin, I., 1997, Using AVO for fracture detection: Analytic basis and practical solutions: The Leading Edge, 16, 1429−1434.
[22] Schoenberg, M., 1983, Reflection of elastic waves from periodically stratified media with interfacial slip: Geophys Prospect, 31, 265−292.
[23] Shen, F., Sierra, J., Burns, D. R., and Toksoz, M. N., 2002, Azimuthal offset-dependent attributes applied to fracture detection in a carbonate reservoir: Geophysics, 67, 355−364.
[24] Tod, S., Taylor, B., Johnston, R., and Allen, T., 2007. Fracture prediction from wide-azimuth land seismic data in SE Algeria: The Leading Edge, 26, 1154−1160.
[25] Wang, Y., Chen, S. Q., and Li, X. Y., 2015, Anisotropic characteristics of mesoscale fractures and applications to wide azimuth 3D P-wave seismic data: Journal of Geophysics and Engineering, 12(3), 448−464.
[26] Wang, Y., Zheng, D., Li, X. -Y., Cui, Y., Sun, S., Wan, X. and Yang, P., 2014, The fracture-cavern system prediction method and its application in carbonate fractured-vuggy reservoirs: Geophysical Prospecting for Petroleum (in Chinese), 53(6), 727−736.
[27] Yin, Z. H., Li, X. -Y., Wei, J. X., Di, B. R., Zhang, S.H. and Wu, M.S., 2012, A physical modeling study on the 3D P-wave azimuthal anisotropy in HTI media: Chinese Journal Geophysics. (in Chinese), 55(11), 3805−3812.
[1] 马汝鹏,巴晶,Carcione J. M. ,周欣,李帆. 致密油岩石纵波频散及衰减特征研究:实验观测及理论模拟*[J]. 应用地球物理, 2019, 16(1): 36-49.
[2] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[3] 孙思源,殷长春,高秀鹤,刘云鹤,任秀艳. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
[4] 李媛媛, 李振春, 张凯, 张旋. 基于双级并行的弹性波频率域全波形多尺度反演方法[J]. 应用地球物理, 2015, 12(4): 545-554.
[5] 隋京坤, 郑晓东, 李艳东. 一种基于振幅谱的地震相干属性计算方法[J]. 应用地球物理, 2015, 12(3): 353-361.
[6] 刘财, 李博南, 赵旭, 刘洋, 鹿琪. 基于频变AVO技术对多尺度裂缝内流体属性反演与识别[J]. 应用地球物理, 2014, 11(4): 384-394.
[7] 蔡涵鹏, 贺振华, 李亚林, 何光明, 邹文, 张洞君, 刘璞. 边界和振幅特性保持的自适应噪声衰减方法[J]. 应用地球物理, 2014, 11(3): 289-300.
[8] 于豪, 巴晶, Carcione Jose, 李劲松, 唐刚, 张兴阳, 何新贞, 欧阳华. 非均质碳酸盐岩储层岩石物理建模:孔隙度估算与烃类检测[J]. 应用地球物理, 2014, 11(1): 9-22.
[9] 陈学华, 杨威, 贺振华, 钟文丽, 文晓涛. 三维多尺度体曲率的算法及应用[J]. 应用地球物理, 2012, 9(1): 65-72.
[10] 郑静静, 印兴耀, 张广智, 武国虎, 张作胜. 基于第二代Curvelet变换的面波压制[J]. 应用地球物理, 2010, 7(4): 325-335.
[11] 潘纪顺, 徐朝繁, 张先康, 赵平, 田晓峰. 2D多尺度混合优化地球物理反演方法及其应用[J]. 应用地球物理, 2009, 6(4): 363-374.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司