APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (1): 93-102    DOI: 10.1007/s11770-016-0544-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
井地联合近地表Q因子层析反演
李国发1,郑浩1,祝文亮2,王明超1,翟桐立2
1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
2. 中国石油天然气股份有限公司大港油田分公司,天津 300280
Tomographic inversion of near-surface Q factor by combining surface and cross-hole seismic surveys
Li Guo-Fa1, Zheng Hao1, Zhu Wen-Liang2, Wang Ming-Chao1, and Zhai Tong-Li2
1. China University of Petroleum, State Key Laboratory of Petroleum Resource and Prospecting, Beijing 102249, China.
2. Dagang Oilfield, PetroChina, Tianjin 300280, China.
 全文: PDF (921 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 Q因子估算是近地表吸收补偿提高地震记录分辨率最为重要的基础工作之一。我们采用了一种新的井地联合地震数据采集方式减小检波器耦合对Q因子估算的影响。在以激发井为中心的圆周上,按照井下检波器的设计深度,布置多口深度不同的接收井,将检波器直接安置在每口井的井底,以消除常规井间观测方式造成的检波器与井壁耦合对Q因子估算的影响。在此基础上,我们提出了一种不受激发影响的Q因子层析反演方法,利用模型数据就该方法的稳定性和可靠性进行了测试分析。使用两个不同的地震频带对大港油田实际近地表观测数据进行了吸收反演,反演结果表明,近地表的吸收系数远大于地下地层的吸收系数,近地表吸收补偿对于提高地震资料分辨率具有重要的现实意义。另外,两个频带反演得到了不同的Q因子,这在一定程度上支持了Q因子对频率依赖性的认识。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李国发
郑浩
祝文亮
王明超
翟桐立
关键词近地表   Q因子   层析反演   谱比法   频率依赖性     
Abstract: The estimation of the quality factor Q plays a fundamental role in enhancing seismic resolution via absorption compensation in the near-surface layer. We present a new geometry that can be used to acquire field data by combining surface and cross-hole surveys to decrease the effect of geophone coupling on Q estimation. In this study, we drilled number of receiver holes around the source hole, each hole has different depth and each geophone is  placed geophones into the bottom of each receiver hole to avoid the effect of geophone coupling with the borehole wall on Q estimation in conventional cross-hole seismic surveys. We also propose a novel tomographic inversion of the Q factor without the effect of the source signature, and examine its stability and reliability using synthetic data. We estimate the Q factors of the near-surface layer in two different frequency bands using field data acquired in the Dagang Oilfield. The results show that seismic absorption in the near-surface layer is much greater than that in the subsurface strata. Thus, it is of critical practical importance to enhance the seismic solution by compensating for near-surface absorption. In addition, we derive different Q factors from two frequency bands, which can be treated, to some extent, as evidence of a frequency-dependent Q.
Key wordsnear surface   Q factor   tomographic inversion   spectral ratio method   frequency dependence   
收稿日期: 2015-05-08;
基金资助:

本研究由国家自然科学基金(编号:41174117和41474109)和国家重点基础研究发展计划(973)项目(编号:2013CB228606)联合资助。

引用本文:   
李国发,郑浩,祝文亮等. 井地联合近地表Q因子层析反演[J]. 应用地球物理, 2016, 13(1): 93-102.
Li Guo-Fa,Zheng Hao,Zhu Wen-Liang et al. Tomographic inversion of near-surface Q factor by combining surface and cross-hole seismic surveys[J]. APPLIED GEOPHYSICS, 2016, 13(1): 93-102.
 
[1] Badri, M., and Mooney, H. M., 1987, Q measurements from compressional seismic waves in unconsolidated sediments: Geophysics, 52(6), 772−784.
[2] Blias, E., 2012, Accurate interval Q-factor estimation from VSP data: Geophysics, 77(3), WA149-WA156.
[3] Brzostowski, M. A., and McMechan, G. A., 1992, 3-D tomographic imaging of near-surface seismic velocity and attenuation: Geophysics, 57(3), 396−403.
[4] Cao, H., and Zhou, H., 2009, Reflection attenuation tomography: comparison between two neighboring ray approaches: 79th Annual International Meeting, SEG, Expanded Abstracts, 4009−4013.
[5] Cao, H., and Zhou, H., 2010, Reflection attenuation tomography: a field example: 80th Annual International Meeting, SEG, Expanded Abstracts, 2815−2819.
[6] Carey, W. M., Pierce, A. D., Evans, R. E., and Holmes, J. D., 2008. On the exponent in the power law for the attenuation at low frequencies in sandy sediments: Journal of the Acoustical Society of America, 124(5), EL271−EL277.
[7] Cavalca, M., Moore, I., and Zhang, L., 2011, Ray-based tomography for Q estimation and Q compensation in complex media: 81th Annual International Meeting, SEG, Expanded Abstracts, 3989−3993.
[8] Futterman, W. I., 1962, Dispersive body waves: Journal of Geophysical Research, 67(13), 5279−5291.
[9] Gurevich, B., and Pevzner, R., 2015. How frequency dependency of Q affects spectral ratio estimates: Geophysics, 80(2), A39−A44.
[10] Hatherly, P. J., 1986, Attenuation measurements on shallow seismic refraction data: Geophysics, 51(2), 250−254.
[11] Hauge, P. S., 1981, Measurements of attenuation from vertical seismic profiles: Geophysics, 46(11), 1548-1558.
[12] Jeng, Y., Tsai, J. Y., and Chen, S. H., 1999, An improved method of determining near-surface Q: Geophysics, 64(5), 1608−1617.
[13] Jones, T. D., 1986. Pore fluids and frequency dependent wave propagation in rocks: Geophysics, 51(10), 1939-1953.
[14] Kan, T. K., Batzle, M. L., and Gaiser, J. E., 1983. Attenuation measured from VSP: evidence of frequency-dependent Q: 53th Annual International Meeting, SEG, Expanded Abstracts, 589−590.
[15] Li, G., Peng, G., Yue, Y., Wang W., and Cui, Y., 2012, Signal-purity-spectrum-based colored deconvolution: Applied Geophysics, 9(3), 333-340.
[16] Li, G., Liu, Y., Zheng, H., and Huang, W., 2015a, Absorption decomposition and compensation via a two-step scheme: Geophysics, 80(6), V145−V155.
[17] Li, G., Zheng, H., Zhang, X., Lin, X., and Cao, M., 2015b, Frequency-dependent near-surface Q factor measurements via a cross-hole survey: Journal of Applied Geophysics, 121, 1-12.
[18] Liao, Q., and McMechan, G. A., 1997, Tomographic imaging of velocity and Q, with application to crosswell seismic data from the Gypsy Pilot Site, Oklahoma: Geophysics, 62(6), 1804-1811.
[19] Lupinacci, W. M., and Oliveira, S. A. M., 2015, Q factor estimation from the amplitude spectrum of the time-frequency transform of stacked reflection seismic data: Journal of Applied Geophysics, 114, 202−209.
[20] Mangriotis, M. D., Rector, J. W., and Herkenhoff, E. F., 2011, Effects of the near-field on shallow seismic studies: Geophysics, 76(1), B9−B18.
[21] Müller, T. M., Gurevich, B., and Lebedev, M., 2010, Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks—A review: Geophysics, 75(5), A147−A164.
[22] Piane, C. D., Sarout, J., Madonna, C., Saenger, E. H., Dewhurst, D. N., and Raven, M., 2014, Frequency-dependent seismic attenuation in shales: experimental results and theoretical analysis: Geophysical Journal International, 198(1), 504−515.
[23] Quan, Y., and Harris, J. M., 1997, Seismic attenuation tomography using the frequency shift method: Geophysics, 62(3), 895-905.
[24] Reine, C., Clark, R., and Van der Baan, M., 2012, Robust prestack Q-determination using surface seismic data: Part 2-3D case study: Geophysics, 77(1), B1−B10.
[25] Rickett, J., 2006, Integrated estimation of interval-attenuation profiles: Geophysics, 71(4), A19−A23.
[26] Sams, M. S., Neep, J. P., Worthington, M. H., and King, M. S., 1997, The measurement of velocity Dispersion and frequency-dependent intrinsic attenuation in sedimentary rocks: Geophysics, 62(5), 1456−1464.
[27] Shi, Z., Tian, G., Wang, B., and Chen, S., 2009, Near-surface absorption compensation technology and its application in the Daqing: Applied Geophysics, 6(2), 184−191.
[28] Tonn, R., 1991, The determination of the seismic quality factors Q from VSP data: A comparison of different computational methods: Geophysical Prospecting, 39(1), 1−27.
[29] Wang, C., Pei, J., and Wang, J., 2013, Near-surface Q model building and inverse Q filtering:A case study from Daqing oilfield, China: 83th Annual International Meeting, SEG, Expanded Abstracts, 1821−1825.
[30] Wang, S., Zhao, J., Li, Z., Harris, J. M., and Quan, Y., 2012, Differential Acoustic Resonance Spectroscopy for the acoustic measurement of small and irregular samples in the low frequency range: Journal of Geophysical Research, 117, B06203.
[31] Zhang, G. L., Wang, X. M., He, Z. H., Cao J. X., Li, K. E., and Rong, J. J., 2014, Interval Q inversion based on zero-offset VSP data and applications: Applied Geophysics, 11(2), 235−244.
[32] Zhou, J. X., Zhang, X. Z,. and Knobles, D. P., 2009. Low-frequency geoacoustic model for the effective properties of sandy sea bottoms: Journal of the Acoustical Society of America, 125(5), 2847−2866.
[1] 邢逢源,杨锴,薛冬,汪小将,陈宝书. 基于结构张量算法的南海深水三维立体层析反演实例研究[J]. 应用地球物理, 2017, 14(1): 142-153.
[2] 何怡原,胡天跃,何川,谭玉阳. TI介质中的P波衰减各向异性及其在裂缝参数反演中的应用[J]. 应用地球物理, 2016, 13(4): 649-657.
[3] 王宗俊, 曹思远, 张浩然, 曲英铭, 袁殿, 杨金浩, 张德龙, 邵冠铭. 能量比法提取品质因子Q[J]. 应用地球物理, 2015, 12(1): 86-92.
[4] 周腾飞, 彭更新, 胡天跃, 段文胜, 姚逢昌, 刘依谋. 基于萤火虫算法的瑞利波非线性反演[J]. 应用地球物理, 2014, 11(2): 167-178.
[5] 张固澜, 王熙明, 贺振华, 曹俊兴, 李可恩, 容娇君. 零偏移距VSP资料层Q反演及其应用研究[J]. 应用地球物理, 2014, 11(2): 235-244.
[6] 张凯, 尹正, 李振春, 陈永芮. 基于Born/Rytov近似的波动方程层析速度反演方法研究[J]. 应用地球物理, 2013, 10(3): 314-322.
[7] 杨锴, 周星, 李辉, 刘玉柱. 基于Monte Carlo方法的近地表速度模型建模研究[J]. 应用地球物理, 2012, 9(4): 475-482.
[8] 张凯, 李振春, 曾同生, 秦宁, 姚云霞. 基于起伏地表的层析速度反演方法研究[J]. 应用地球物理, 2012, 9(3): 313-318.
[9] 刘炯, 魏修成, 季玉新, 陈天胜, 刘春园, 张春涛, 戴明刚. 随机弹性介质中地震波散射衰减分析[J]. 应用地球物理, 2011, 8(4): 344-354.
[10] 石战结, 田钢, 王帮兵, 陈树民. 叠前三维地震近地表吸收补偿技术在大庆油田的应用研究[J]. 应用地球物理, 2009, 6(2): 184-191.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司