Abstract:
In planning and executing marine controlled-source electromagnetic methods, seafloor electromagnetic receivers must overcome the problems of noise, clock drift, and power consumption. To design a receiver that performs well and overcomes the abovementioned problems, we performed forward modeling of the E-field abnormal response and established the receiver’s characteristics. We describe the design optimization and the properties of each component, that is, low-noise induction coil sensor, low-noise Ag/AgCl electrode, low-noise chopper amplifier, digital temperature-compensated crystal oscillator module, acoustic telemetry modem, and burn wire system. Finally, we discuss the results of onshore and offshore field tests to show the effectiveness of the developed seafloor electromagnetic receiver and its performance: typical E-field noise of 0.12 nV/m/rt(Hz) at 0.5 Hz, dynamic range higher than 120 dB, clock drift lower than 1 ms/day, and continuous operation of at least 21 days.
Chen Kai,Wei Wen-Bo,Deng Ming et al. A seafloor electromagnetic receiver for marine magnetotellurics and marine controlled-source electromagnetic sounding[J]. APPLIED GEOPHYSICS, 2015, 12(3): 317-326.
[1]
Best, A., 2014, Physics of rocks for hydrocarbon exploration: Introduction: Geophysical Prospecting, 62(6),1203−1204. doi: 10.1111/1365-2478.12193.
[2]
Bin, Y., Wanhua Z., and Leisong, L., 2013, An optimization method for induction magnetometer of 0.1 mHz to 1 kHz: IEEE Transactions on Magnetics, 49, 5294−5300. doi: 10.1109/TMAG.2013.2264821.
[3]
Chave, A. D., R. Von Herzen, P., Poehls, K. A., and Cox, C. S., 1981, Electromagnetic induction fields in the deep ocean north-east of Hawaii: implications for mantle conductivity and source fields: Geophysical Journal of the Royal Astronomical Society, 66(2), 379−406. doi: 10.1111/j.1365-246X.1981.tb05961.x.
[4]
Constable, S. C., 2013, Review paper: Instrumentation for marine magnetotelluric and controlled source electromagnetic sounding: Geophysical Prospecting, 61, 505−532. doi: 10.1111/j.1365-2478.2012.01117.x.
[5]
Constable, S. C., Orange, A. S., Hoversten, G. M., and Morrison, H. F., 1998, Marine magnetotellurics for petroleum exploration Part I: A sea-floor equipment system: Geophysics, 63(3), 816−825. doi: 10.1190/1.1444393.
[6]
Constable, S. C., and Srnka, L. J., 2007, An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration: Geophysics, 72(2), WA3−WA12. doi: 10.1190/1.2432483.
[7]
Cox, C. S., Constable, S. C., Chave, A. D., and Webb, S. C., 1986, Controlled-source electrpmagnetic sounding of the oceanic lithosphere: Nature, 320(6057), 52−54. doi: 10.1038/320052a0.
[8]
Egbert, G. D., and Livelybrooks D. W., 1996, Single station magnetotelluric impedance estimation: Coherence weighting and the regression M-estimate: Geophysics, 61(4), 964−970.
[9]
Ellingsrud, S., Eidesmo, T., Johansen, S., Sinha, M., MacGregor, L., and Constable, S., 2002, Remote sensing of hydrocarbon layers by seabed logging (SBL): Results from a cruise offshore Angola: The Leading Edge, 21(10), 972−982.
[10]
Evans, R. L., 2007, Using CSEM techniques to map the shallow section of seafloor: From the coastline to the edges of the continental slope: Geophysics, 72(2), WA105−WA116. doi: 10.1190/1.2434798.
[11]
Goto, T.-n., Kasaya, T., Machiyama, H., Takagi, R., Matsumoto, R., Okuda, Y., Satoh, M., Watanabe, T., Seama, N., Mikada, H., Sanada, Y., and Kinoshita, M., 2008, A marine deep-towed DC resistivity survey in a methane hydrate area: Japan Sea: Exploration Geophysics, 39(1), 52−59. doi: 10.1071/eg08003.
[12]
He, Z. X., Stract, K., Yu, G., and Wang, Z. C., 2008, On reservoir boundary detection with marine CSEM: Applied Geophysics, 5(3), 181−188.
Vrbancich, J., 1993, Instrumentation for detection and generation of ELF emissions in seawater: Exploration Geophysics, 24(2), 167−174.
[15]
Webb, S. C., Constable, S. C., Cox, C. S., and Deaton, T. K., 1985, A sea-floor electric-field instrument: Journal of Geomagnetism and Geoelectricity, 37(12), 1115−1129.
[16]
Wei, W., Deng, M., and Wen Z., 2009, Experimental Study of Marine Magnetotelluric in Southern Huanghai: Chinese Journal of Geophysics, 52(2), 440−450.
[17]
Weitemeyer, K. A., Constable, S. C., Key K. W., and Behrens, J. P., 2006, First results from a marine controlled-source electromagnetic survey to detect gas hydrates offshore Oregon: Geophysical Research Letters, 33(3), L03304. doi: 10.1029/2005gl024896.
[18]
Worzewski, T., Jegen, M., Kopp, H., Brasse, H., and Castillo, W. T., 2011, Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone: Nature Geoscience, 4(2), 108−111. doi: 10.1038/ngeo1041.
[19]
Yuan, J., and Edwards, R. N., 2000, The assessment of marine gas hydrates through electrical remote sounding: Hydrate without a BSR?: Geophysical Research Letters, 27(16), 2397−2400. doi: 10.1029/2000gl011585.
[20]
Zhang, J. G., Wu, X., Qi, Y. Z., Huang, L., and Fang, G. Y., 2013, Research on 3D marine electromagnetic interferometry with synthetic sources for suppressing the airwave interference: Applied Geophysics, 10(4), 373−383. doi: 10.1007/s11770-013-0403-3.
[21]
Zhao, L. X., Geng, J. H., Zhang, S. Y., and Yang, D. K., 2008, 1-D Controlled source electromagnetic forward modeling for marine gas hydrates studies: Applied Geophysics, 5(2), 121−126.