APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (3): 317-326    DOI: 10.1007/s11770-015-0494-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
用于海底MT及海洋CSEM的海底电磁采集站
陈凯1,魏文博1,邓明1,伍忠良2,余刚3
1. 地下信息探测技术与仪器教育部重点实验室(中国地质大学(北京)),北京 100083
2. 中国地质调查局广州海洋地质调查局,广东广州 510760
3. 中石油东方地球物理公司,河北涿州 072751
A seafloor electromagnetic receiver for marine magnetotellurics and marine controlled-source electromagnetic sounding
Chen Kai1, Wei Wen-Bo1, Deng Ming1, Wu Zhong-Liang2, and Yu Gang3
1. Key Laboratory of Geo-detection Ministry of Education, China University of Geosciences, Beijing 100083, China.
2. Guangzhou Marine Geological Survey, China Geological survey, Guangzhou 510760, China.
3. Nonseismic Survey, BGP, CNPC, Zhuozhou, Hebei 072751, China.
 全文: PDF (1658 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为适应海洋可控源电磁法现场数据采集的需求,海底电磁采集站必须解决低噪声、低时漂和低功耗等一系列技术难题。目前,现有的采集站在面向海底浅部水合物探测应用时,其噪声、功耗、时漂等指标仍存在不足。为研制满足这些性能要求的新型采集站,本文首先利用正演数值模拟研究了特定模型的电场异常分布规律,并初步确定了采集站的指标要求,然后对采集站的各个部分进行了详细论述,包括低噪声感应式磁传感器、低噪声Ag/AgCl电极、低噪声斩波放大器、低功耗低漂移数字温补晶振、水声通讯及电腐蚀技术等。最后通过陆地野外试验及海洋试验验证了海底电磁采集站的有效性,证明采集站具有先进的参数指标:典型电场本底噪声:0.12nV/m/rt(Hz)@0.5Hz;动态范围:大于120dB;时漂 :小于1ms/day;连续工作时间:至少21天。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈凯
魏文博
邓明
伍忠良
余刚
关键词海洋可控源电磁法   海底电磁采集站   海洋电场传感器   低噪声斩波放大器   水声通讯     
Abstract: In planning and executing marine controlled-source electromagnetic methods, seafloor electromagnetic receivers must overcome the problems of noise, clock drift, and power consumption. To design a receiver that performs well and overcomes the abovementioned problems, we performed forward modeling of the E-field abnormal response and established the receiver’s characteristics. We describe the design optimization and the properties of each component, that is, low-noise induction coil sensor, low-noise Ag/AgCl electrode, low-noise chopper amplifier, digital temperature-compensated crystal oscillator module, acoustic telemetry modem, and burn wire system. Finally, we discuss the results of onshore and offshore field tests to show the effectiveness of the developed seafloor electromagnetic receiver and its performance: typical E-field noise of 0.12 nV/m/rt(Hz) at 0.5 Hz, dynamic range higher than 120 dB, clock drift lower than 1 ms/day, and continuous operation of at least 21 days.
Key wordsMCSEM   seafloor EM receiver   seafloor electric field sensor   chopper amplifier   acoustic telemetry modem   
收稿日期: 2015-04-14;
基金资助:

本研究由科技部863课题 (编号:2006AA09A201和2009AA09A201)、中国地质调查局项目(编号: 201100307)和教育部中央高校基本科研业务费(编号:2652011249)联合资助。

引用本文:   
陈凯,魏文博,邓明等. 用于海底MT及海洋CSEM的海底电磁采集站[J]. 应用地球物理, 2015, 12(3): 317-326.
Chen Kai,Wei Wen-Bo,Deng Ming et al. A seafloor electromagnetic receiver for marine magnetotellurics and marine controlled-source electromagnetic sounding[J]. APPLIED GEOPHYSICS, 2015, 12(3): 317-326.
 
[1] Best, A., 2014, Physics of rocks for hydrocarbon exploration: Introduction: Geophysical Prospecting, 62(6),1203−1204. doi: 10.1111/1365-2478.12193.
[2] Bin, Y., Wanhua Z., and Leisong, L., 2013, An optimization method for induction magnetometer of 0.1 mHz to 1 kHz: IEEE Transactions on Magnetics, 49, 5294−5300. doi: 10.1109/TMAG.2013.2264821.
[3] Chave, A. D., R. Von Herzen, P., Poehls, K. A., and Cox, C. S., 1981, Electromagnetic induction fields in the deep ocean north-east of Hawaii: implications for mantle conductivity and source fields: Geophysical Journal of the Royal Astronomical Society, 66(2), 379−406. doi: 10.1111/j.1365-246X.1981.tb05961.x.
[4] Constable, S. C., 2013, Review paper: Instrumentation for marine magnetotelluric and controlled source electromagnetic sounding: Geophysical Prospecting, 61, 505−532. doi: 10.1111/j.1365-2478.2012.01117.x.
[5] Constable, S. C., Orange, A. S., Hoversten, G. M., and Morrison, H. F., 1998, Marine magnetotellurics for petroleum exploration Part I: A sea-floor equipment system: Geophysics, 63(3), 816−825. doi: 10.1190/1.1444393.
[6] Constable, S. C., and Srnka, L. J., 2007, An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration: Geophysics, 72(2), WA3−WA12. doi: 10.1190/1.2432483.
[7] Cox, C. S., Constable, S. C., Chave, A. D., and Webb, S. C., 1986, Controlled-source electrpmagnetic sounding of the oceanic lithosphere: Nature, 320(6057), 52−54. doi: 10.1038/320052a0.
[8] Egbert, G. D., and Livelybrooks D. W., 1996, Single station magnetotelluric impedance estimation: Coherence weighting and the regression M-estimate: Geophysics, 61(4), 964−970.
[9] Ellingsrud, S., Eidesmo, T., Johansen, S., Sinha, M., MacGregor, L., and Constable, S., 2002, Remote sensing of hydrocarbon layers by seabed logging (SBL): Results from a cruise offshore Angola: The Leading Edge, 21(10), 972−982.
[10] Evans, R. L., 2007, Using CSEM techniques to map the shallow section of seafloor: From the coastline to the edges of the continental slope: Geophysics, 72(2), WA105−WA116. doi: 10.1190/1.2434798.
[11] Goto, T.-n., Kasaya, T., Machiyama, H., Takagi, R., Matsumoto, R., Okuda, Y., Satoh, M., Watanabe, T., Seama, N., Mikada, H., Sanada, Y., and Kinoshita, M., 2008, A marine deep-towed DC resistivity survey in a methane hydrate area: Japan Sea: Exploration Geophysics, 39(1), 52−59. doi: 10.1071/eg08003.
[12] He, Z. X., Stract, K., Yu, G., and Wang, Z. C., 2008, On reservoir boundary detection with marine CSEM: Applied Geophysics, 5(3), 181−188.
[13] Tumanski, S., 2007, Induction coil sensors - a review: Measurement Science & Technology, 18(3), R31−R46. doi: 10.1088/0957-0233/18/3/r01.
[14] Vrbancich, J., 1993, Instrumentation for detection and generation of ELF emissions in seawater: Exploration Geophysics, 24(2), 167−174.
[15] Webb, S. C., Constable, S. C., Cox, C. S., and Deaton, T. K., 1985, A sea-floor electric-field instrument: Journal of Geomagnetism and Geoelectricity, 37(12), 1115−1129.
[16] Wei, W., Deng, M., and Wen Z., 2009, Experimental Study of Marine Magnetotelluric in Southern Huanghai: Chinese Journal of Geophysics, 52(2), 440−450.
[17] Weitemeyer, K. A., Constable, S. C., Key K. W., and Behrens, J. P., 2006, First results from a marine controlled-source electromagnetic survey to detect gas hydrates offshore Oregon: Geophysical Research Letters, 33(3), L03304. doi: 10.1029/2005gl024896.
[18] Worzewski, T., Jegen, M., Kopp, H., Brasse, H., and Castillo, W. T., 2011, Magnetotelluric image of the fluid cycle in the Costa Rican subduction zone: Nature Geoscience, 4(2), 108−111. doi: 10.1038/ngeo1041.
[19] Yuan, J., and Edwards, R. N., 2000, The assessment of marine gas hydrates through electrical remote sounding: Hydrate without a BSR?: Geophysical Research Letters, 27(16), 2397−2400. doi: 10.1029/2000gl011585.
[20] Zhang, J. G., Wu, X., Qi, Y. Z., Huang, L., and Fang, G. Y., 2013, Research on 3D marine electromagnetic interferometry with synthetic sources for suppressing the airwave interference: Applied Geophysics, 10(4), 373−383. doi: 10.1007/s11770-013-0403-3.
[21] Zhao, L. X., Geng, J. H., Zhang, S. Y., and Yang, D. K., 2008, 1-D Controlled source electromagnetic forward modeling for marine gas hydrates studies: Applied Geophysics, 5(2), 121−126.
[1] 张建国, 武欣, 齐有政, 黄玲, 方广有. 三维海洋电磁合成源干涉法抗空气波干扰研究[J]. 应用地球物理, 2013, 10(4): 373-383.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司