APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (3): 303-316    DOI: 10.1007/s11770-015-0500-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于数据拟合的区域地磁场建模研究
冯彦1,2,孙涵3,蒋勇1
1. 南京信息工程大学数学与统计学院,南京 210044
2. 中国科学院空间天气学国家重点实验室,北京 100080
3. 国家卫星气象中心遥感应用试验基地/广西气象减灾研究所,南宁 530022
Data fitting and modeling of regional geomagnetic field
Feng Yan1,2, Sun Han3, and Jiang Yong1
1. The College of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China.
2. Sate Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100080, China.
3. Remote Sensing Application and Experiment Station of National Satellite Meteorological Center/Guangxi Meteorological Disaster Mitigation Institute, Nanning 530022, China.
 全文: PDF (1189 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 通过数据拟合建立区域地磁场模型时,一般都存在截断阶数的选取与边界效应的控制问题。针对常用的Taylor多项式模型和Legendre多项式模型,结合中国地区1960、1970、1990和2000年的实测地磁数据,分别研究了两种问题的解决方案。首先计算模型的均方根偏差(RMSE)可初步确定截断阶数的选取范围,再计算AKAIKE信息标准值(AIC)与标准均方根偏差(NRMSE)并进行比较,可确定合适的截断阶数。通过异常区域添加法与均匀添加法逐次添加境外补充点,发现随着补充点的增加,境外磁异常极值点强度逐步减少并趋于稳定。均匀添加法能够更好地控制中国地区的边界效应,而异常区域添加法更适合处理小尺度地区的边界效应。根据结果,提出了三步法以确定截断阶数,还提出了两个准则以基本确定补充点的数量,从而可较好地控制边界效应。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯彦
孙涵
蒋勇
关键词边界效应   截断阶数   Taylor多项式   Legendre多项式   IGRF11   CM4     
Abstract: The selection of the truncation level (TL) and the control of boundary effect (BE) are critical in regional geomagnetic field models that are based on data fitting. We combine Taylor and Legendre polynomials to model geomagnetic data over mainland China for years 1960, 1970, 1990, and 2000. To tackle the TL and BE problems, we first determine the range of TL by calculating the root-mean-square error (RMSE) of the models. Next, we determine the optimum TL using the Akaike information criterion (AIC) and the normalized root-mean-square error (NRMSE). We use the regional anomaly addition (RAA) and the uniform addition (UA) method to add supplementary point outside the national boundary, and find that the intensities of extreme points gradually decrease and stabilize. The UA method better controls BEs over China, whereas the RAA method does a better job at smaller scales. In summary, we rely on a three-step method to determine the optimum TL and propose criteria to determine the optimum number of supplementary points.
Key wordsBoundary effect   truncation level   Taylor polynomial   Legendre polynomial   IGRF11   CM4   
收稿日期: 2014-12-31;
基金资助:

本研究由国家自然科学基金(编号:41404053、41174165)、公益性行业(气象)科研专项(编号:GYHY201306073)和江苏省高校自然科学研究基金(编号:14KJB170012)联合资助。

引用本文:   
冯彦,孙涵,蒋勇. 基于数据拟合的区域地磁场建模研究[J]. 应用地球物理, 2015, 12(3): 303-316.
Feng Yan,Sun Han,Jiang Yong. Data fitting and modeling of regional geomagnetic field[J]. APPLIED GEOPHYSICS, 2015, 12(3): 303-316.
 
[1] Akaike, H., 1974, A new look at the statistical model identification. IEEE Trans Automat Contr AC-19: 716−723.
[2] An, Z., and Tan, D., 1995, Legendre polynomial models of the geomagnetic field over the Eastern Asia at epoch 1980.0: Chinese Journal of Geophysics (in Chinese), 38(2), 227−233.
[3] An, Z., and Rotanova, N., 2002, Calculation and analyses of the geomagnetic field models for east asia: Chinese Journal of Geophysics (in Chinese), 45(1), 34−41.
[4] An, Z., 2000, Research on geomagnetic field model in Qinghai-Tibet Plateau: Chinese Journal of Geophysics (in Chinese), 43(3), 339−345.
[5] Chapman, S., and Bartels, J., 1940, Geomagnetism: Oxford University Press, London.
[6] Chen, B., Gu, Z., Gao, J., Yuan, J., Di, C., 2011, Soriano, B., Lao, C., Zhang, Y., Xin C., and Gao, J., 2011, The study of magnetic field models for Philippines and its neighboring regions. Chinese Journal of Geophysics (in Chinese), 54(8), 2085−2092.
[7] Di, C., Gu, Z., Soriano, B., Lao, C., Zhang, Y., Xin C., and Gao, J., 2011, The study of magnetic field models for Philippines and its neighboring regions: Chinese Journal of Geophysics (in Chinese), 54(8), 2085−2092
[8] Fedorova, N., and Shapiro, V., 1998, Reference field for the airborne magnetic data: Earth Planets Space, 50, 397−404.
[9] Finly, C. C., Maus, S., Beggan, C. D., et al., International Geomagnetic Reference Field: the eleventh generation: Geophysical Journal International, 183(3), 1216−1230.
[10] Gao, J., An, Z., Gu, Z., Han, W., Zhan, Z., Yao, T., 2006, Distribution of the geomagnetic field and its secular variations expressed by the surface Spline method in China (a part) for 1900−1936: Chinese Journal of Geophysics (in Chinese), 49(2), 398−407.
[11] Gao, J., An, Z., Gu, Z., Han, W., Zhan, Z., and Yao, T., 2005, Selection of the geomagnetic normal field and calculation of the geomagnetic anomalous field: Chinese Journal of Geophysics (in Chinese), 48(1), 56−62.
[12] Golovkov, V., Bondar, T., Burdelnaya, I., 2000, Spatial-temporal modeling of the geomagnetic field for 1980~2000 period and a candidate IGRF secular-variation model for 2000−2005: Earth Planets Space, 52(12), 1125−1135.
[13] Golovkov, V., Bondar, T., and Burdelnaya, I., 1997, Using satellite magnetic survey data for spatial-termporal modeling of the geomagnetic secular variation: Journal of Geomagnetism and Geoelectricity, 49, 207−227.
[14] Gu, Z., An, Z., Gao, J., Han, W., and Zhan, Z., 2004, Spherical cap harmonic analysis of the geomagnetic field in the Beijing-Tianjin-Hebei region: Chinese Journal of Geophysics (in Chinese), 47(6), 1003−1008.
[15] Gu, Z., Zhan, Z., Gao, J., Han, W., An, Z., Yao, T., and Chen, B., 2006, Geomagnetic survey and geomagnetic model research in China: Earth Planets Space, 58, 741−750.
[16] Haines, G., 1985, Spherical cap harmonic analysis. Journal of Geophysical Research, 90(B3), 2583−2592.
[17] IAGA Commission 2, Working Group 4, 1969, International Geomagnetic Reference Field 1965.0: Journal of Geophysical Research, 74(18), 4407−4408.
[18] Langel, R. A., 1987, The main field: Geomagnetism, 1, 249−512.
[19] Le Mouel, J., 1969, Sur la distribution des elements magnetiques en France[Ph.D. thesis]: University de Paris.
[20] Liu, S., Zhou, X., Sun, H., and An, Z., 2011, The three dimension Taylor polynomial method for the calculation of regional geomagnetic field model: Progress in Geophysics, 26(4), 1165−1174.
[21] Li, S., Meng, X., Guo, L., Yao, C., Chen, Z., and Li, H., 2010, Gravity and magnetic anomalies field characteristics in the South China Sea and its application for interpretation of igneous rocks: Applied Geophysics, 7(4), 295−305.
[22] Olsen,N.,Luhr, H., Finlay, C., Sabaka, T.,Michaelis, I., Rauberg, J., and Toeffner-Clausen, L., 2014, The CHAOS-4Geomagnetic field model: Geophysical Journal International, 197, 815−827.
[23] Qing, X., 2005, Nearest neighbor clustering algorithm based on AIC criterion: Systems Engineering and Electronics, 27(2), 257−259.
[24] Sabaka, T., Olsen, N., and Purucker, M., 2004, Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data: Geophysical Journal International, 159(2), 521−547.
[25] Thebault, E., Schott, J. J., and Mandea, M., 2006, Revised spherical cap harmonic analysis (R-SCHA)Validation and properties: Journal of Geophysical Research, 111, doi:10.1029/2005JB004110.
[26] Toh, H., Kanezaki, H., and Ichiki, M., 2007, A regional model of the geomagnetic field over the Pacific Ocean for epoch 2002: Geophysical Research Letters, doi:10.1029/2007GL029341, 2007.
[27] Torta, J. M., Gaya-Pique, L., Santis, R., and De, A., 2006, Spherical cap harmonic analysis of the geomagnetic field with application for aeronautical mapping. Geomagnetic for aeronautical safety NATO: Springer: Dordrecht, Netherland. DOI:10.1007/978-1-4020-5025-1_23.
[28] Zhang, M. H., He, J., and Wang, C. X., 2011, The launch of a large regional gravity information system in China: Applied Geophysics, 8(2), 170−175.
[29] Zmuda, A., 1971, The international geomagnetic reference field. In: IUGG, ed. World Magnetic Survey: IAGA Bulletin.
[1] 冯彦,蒋勇. 千年尺度的中国大陆及邻近区域非偶极子磁场的时空变化研究[J]. 应用地球物理, 2017, 14(2): 314-321.
[2] 冯彦,蒋勇,姜乙,刘宝嘉,蒋谨,刘中微,叶美晨,王弘晟,李秀明. 基于CHAMP卫星的区域卫星磁异常球冠谐分析[J]. 应用地球物理, 2016, 13(3): 561-569.
[3] 冯彦, 蒋勇, 姜乙, 李正, 蒋瑾, 刘中微, 叶美晨, 王弘晟, 李秀明. 基于三维Taylor多项式和曲面Spline模型的区域磁异常场研究[J]. 应用地球物理, 2016, 13(1): 59-68.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司