APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (2): 187-198    DOI: 10.1007/s11770-015-0480-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于斑状饱和模型的储层渗透率地震响应特征分析
郭智奇1,刘财1,李向阳2,3
1. 吉林大学地球探测科学与技术学院,长春 130026
2. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 1022493
3. 中国石油大学(北京)CNPC物探重点实验室,北京 102249
Seismic signatures of reservoir permeability based on the patchy-saturation model
Guo Zhi-Qi1, Liu Cai1, and Li Xiang-Yang2,3
1. Geo-Exploration Science and Technology Institute, Jilin University, Changchun 130026, China.
2. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China.
3. CNPC Key Laboratory of Geophysical Prospecting, China University of Petroleum (Beijing), Beijing 102249, China.
 全文: PDF (1008 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 基于斑块饱和模型计算渗透率变化的地震反射特征,为流体流动性的地震描述提供依据。基于传播矩阵理论设计反射系数与合成记录算法,实现了频率域岩石物理模型与地震响应计算的无缝连接。斑块饱和储层地震响应包含如下动力学信息:分界面处波阻抗差异、储层内部波的频散与衰减,以及顶底界面波的调谐与干涉。模拟结果表明,渗透率的增加显著降低纵波速度,使其在高、低频弹性极限之间发生频散。储层速度频散与层状构造共同导致反射系数的频变现象。在储层与围岩波阻抗接近的情况下,地震响应对渗透率变化具有敏感性,对于不同储层厚度,当围岩为高速页岩时,反射波叠加振幅随渗透率增加而增加;当围岩为低速页岩时,叠加振幅随渗透率增加而降低。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭智奇
刘财
李向阳
关键词Patchy-saturation model   dispersion   attenuation   permeability   propagator matrix method   AVO     
Abstract: Modeling of seismic responses of variable permeability on the basis of the patchy-saturation model provides insights into the seismic characterization of fluid mobility. We linked rock-physics models in the frequency domain and seismic modeling on the basis of the propagator matrix method. For a layered patchy-saturated reservoir, the seismic responses represent a combination of factors, including impedance contrast, the effect of dispersion and attenuation within the reservoir, and the tuning and interference of reflections at the top and bottom of the reservoir. Numerical results suggest that increasing permeability significantly reduces the P-wave velocity and induces dispersion between the high- and low-frequency elastic limit. Velocity dispersion and the layered structure of a reservoir lead to complex reflection waveforms. Seismic reflections are sensitive to permeability if the impedance of the reservoir is close to that of the surroundings. For variable layer thickness, the stacked amplitudes increase with permeability for high-velocity surrounding shale, whereas the stacked amplitudes decrease with permeability for low-velocity surrounding shale.
Key wordsPatchy-saturation model   dispersion   attenuation   permeability   propagator matrix method   AVO   
收稿日期: 2015-02-11;
基金资助:

本研究项目由国家自然科学基金青年科学基金项目(编号:41404090)、国家自然科学基金联合基金项目(编号:U1262208),及中国石化地球物理重点实验室开放研究基金(编号:33550006-14-FW2099-0029)联合资助。

引用本文:   
郭智奇,刘财,李向阳. 基于斑状饱和模型的储层渗透率地震响应特征分析[J]. 应用地球物理, 2015, 12(2): 187-198.
Guo Zhi-Qi,Liu Cai,Li Xiang-Yang. Seismic signatures of reservoir permeability based on the patchy-saturation model[J]. APPLIED GEOPHYSICS, 2015, 12(2): 187-198.
 
[1] Batzle, M. L., Han, D. H., and Hofmann R., 2006, Fluid mobility and frequency dependent seismic velocity-Direct measurements: Geophysics, 71(1), N1-N9.
[2] Carcione, J. M., 2001, AVO effects of a hydrocarbon source-rock layer: Geophysics, 66(2), 419-427.
[3] Carcione, J. M., Helle, H. B., and Pham, N. H., 2003, White’s model for wave propagation in partially saturated rocks: comparison with poroelastic numerical experiments: Geophysics, 68(4), 1389-1398.
[4] Carcione, J. M., and Picotti, S., 2006, P-wave seismic attenuation by slow-wave diffusion: Effects of inhomogeneous rock properties: Geophysics, 71(3), O1-O8.
[5] Daley, T. M., Schoenberg, M. A., Rutqvist, J., et al., 2006, Fractured reservoirs: An analysis of coupled elastodynamic and permeability changes from pore-pressure variation: Geophysics, 71(5), O33-O41.
[6] Guo, Z. Q., 2008, Wave Field Modeling in Viscoelastic Anisotropic Media and Reservoir Information Study: PhD Thesis, Jilin University, Changchun.
[7] Guo, Z. Q., Liu, C., and Li, X. Y., 2015, An improved method for the modeling of frequency dependent amplitude versus offset variations: IEEE Geoscience and remote sensing letters, 12(1), 63-67.
[8] Johnson, D. L., 2001, Theory of frequency dependent acoustics in patchy-saturated porous media: The Journal of the Acoustical Society of America, 110(2), 682-649.
[9] Kozlov, E., 2007., Seismic signature of a permeable, dual-porosity layer: Geophysics, 72(5), SM281-SM291.
[10] Li, X. B., and Dong, L. G., 2014, Viscoelastic representation of patchy saturation media and its seismic wave simulation: Geophysical Prospecting for Petroleum (in Chinese), 53(3), 272-279.
[11] Masson, Y. J., and Pride S. R., 2007, Poroelastic finite difference modeling of seismic attenuation and dispersion due to mesoscopic-scale heterogeneity: Journal of Geophysical Research, 112, B03204.
[12] Picotti, S., Carcione, J. M., Germán, R. J., and Santos J. E., 2007, P-wave seismic attenuation by slow-wave diffusion: Numerical experiments in partially saturated rocks: Geophysics, 72(4), N11-N21.
[13] Picotti, A., Carcione, J. M., Rubino, J., et al., 2010, A viscoelastic representation of wave attenuation in porous media: Computers & Geosciences, 36(1), 44-53.
[14] Pride, S. R., Harris, J. M., Johnson D. L., et al., 2003, Permeability dependence of seismic amplitudes: The Leading Edge, 22, 518-525.
[15] Pride, S. R., Berryman J. G., and Harris J. M., 2004, Seismic attenuation due to wave-induced flow: -Journal of Geophysical Research, 109, B01201.
[16] Quintal, B., Schmalholz, S. M., and Podladchikov, Y., 2009, Low-frequency reflections from a thin layer with high attenuation caused by interlayer flow: Geophysics, 74(1), N15-N23.
[17] Quintal, B. Frehner, M., Madonna, C., et al., 2011, Integrated numerical and laboratory rock physics applied to seismic characterization of reservoir rocks: The Leading Edge, 30(12), 1360-1367.
[18] Quintal, B., 2012, Frequency-dependent attenuation as a potential indicator of oil saturation: Journal of Applied Geophysics, 82, 119-128.
[19] Ren, H. T., Goloshubin, G., and Hilterman, F. J., 2009a., Poroelastic analysis of amplitude-versus-frequency variations: Geophysics, 74(6), N41-N48.
[20] Ren, H. T., Goloshubin, G., and Hilterman, F. J., 2009b, Poroelastic analysis of permeability effects in thinly layered porous media: Geophysics, 74(6), N49-N54.
[21] Rubino, J. G., Ravazzoli, C. L., and Santos, J. E., 2009, Equivalent viscoelastic solids for heterogeneous fluid-saturated porous rocks: Geophysics, 74(1), N1-N13.
[22] Sidler, R., Rubino, J. G., and Holliger, K., 2013, Quantitative comparison between simulations of seismic wave propagation in heterogeneous poro-elastic media and equivalent visco-elastic solids for marine-type environments: Geophysical Journal International, 193(1), 463-474.
[23] Tisato, N., and Quintal, B., 2013, Measurements of seismic attenuation and transient fluid pressure in partially saturated Berea sandstone: evidence of fluid flow on the mesoscopic scale: Geophysical Journal International, 195, 342-351.
[24] Wang, Y. J., Chen, S. Q., Wang, L., et al., 2014, Gas saturation analysis with seismic dispersion attribute based on patchy-saturation model: Oil Geophysical Prospecting (in Chinese), 49(4), 715-722.
[25] Wenzlau, F., and Müller, T. M., 2009, Finite-difference modeling of wave propagation and diffusion in poroelastic media: Geophysics, 74(4), T55-T66.
[26] White, J. E., 1975, Computed seismic speeds and attenuation in rocks with partial gas saturation: Geophysics, 40, 224-232.
[27] White, J. E., Mikhaylova, N. G., and Lyakhovitskiy, F. M., 1975, Low-frequency seismic waves in fluid saturated layered rocks: Physics of the Solid Earth, 11, 654-659.
[1] 宗兆云,印兴耀,李坤. 基于贝叶斯理论的时频域联合AVO反演方法研究[J]. 应用地球物理, 2016, 13(4): 631-640.
[2] 郭智奇, 刘喜武, 符伟, 李向阳. 粘弹各向异性反射体模型方位地震AVO模拟及分析[J]. 应用地球物理, 2015, 12(3): 441-452.
[3] 刘财, 李博南, 赵旭, 刘洋, 鹿琪. 基于频变AVO技术对多尺度裂缝内流体属性反演与识别[J]. 应用地球物理, 2014, 11(4): 384-394.
[4] 林凯, 贺振华, 熊晓军, 贺锡雷, 曹俊兴, 薛雅娟. 基于反演基质矿物模量和多约束条件的双相介质AVO正演方法[J]. 应用地球物理, 2014, 11(4): 395-404.
[5] 麻纪强, 耿建华. 基于Cauchy先验分布的AVO弹性参数弱非线性波形反演[J]. 应用地球物理, 2013, 10(4): 442-452.
[6] 李景叶. 基于流体替换技术的地震AVO 属性气藏识别[J]. 应用地球物理, 2012, 9(2): 139-148.
[7] 侯波, 陈小宏, 李景叶, 张孝珍. 考虑传播效应的多波保幅AVO正演[J]. 应用地球物理, 2011, 8(3): 207-216.
[8] 王璞, 胡天跃. 转换波AVO近似及其在PP/PS联合反演中的应用[J]. 应用地球物理, 2011, 8(3): 189-196.
[9] Zhao Qian, Dunn Keh-Jim, and Liu Xue-Wei. A simulation study of formation permeability as a function of methane hydrate concentration[J]. 应用地球物理, 2011, 8(2): 107-109.
[10] 陈双全, 王尚旭, 张永刚, 季敏. 应用叠前反演弹性参数进行储层预测[J]. 应用地球物理, 2009, 6(4): 375-384.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司