APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (2): 199-211    DOI: 10.1007/s11770-015-0483-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于Zoeppritz方程的叠前地震反演方法研究及其在流体识别中的应用
黄捍东1,2,王彦超1,2,郭飞3,张生1,2,纪永祯1,刘承汉
1. 油气资源与探测国家重点实验室(中国石油大学(北京)),北京102249
2. 中国石油大学提高采收率研究院,北京 102249
3. 中海石油深圳分公司研究院,广州 510240
4. 长江大学地球物理与石油资源学院,湖北武汉 430100
Zoeppritz equation-based prestack inversion and its application in fluid identification
Huang Han-Dong1,2, Wang Yan-Chao1,2, Guo Fei3, Zhang Sheng1,2, Ji Yong-Zhen1, and Liu Cheng-Han4
1. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum-Beijing, Beijing 102249, China.
2. College of Enhanced Oil Recovery, China University of Petroleum-Beijing, Beijing 102249, China.
3. Research Institute, CNOOC Ltd.-Shenzhen, Guangzhou 510240, China.
4. School of Geophysics and Oil Resources, Yangtze University, Wuhan 434023, China.
 全文: PDF (1628 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 现阶段的叠前地震反演技术中用于描述反射系数与纵、横波速度和密度之间的关系几乎完全是Zoeppritz方程的近似式,由于这些近似公式在大角度和弹性参数变化剧烈时误差较大,这不仅降低了反演解的精度,而且增加了叠前反演的多解性。本文探索了直接利用Zoeppritz方程求解精确反射系数的理论方法,并基于广义线性反演理论详细推导了基于叠前大角度地震资料的纵、横波速度和密度三参数同步反演算法,同时在反演过程引入正则化约束阻尼因子和共轭梯度算法,有效降低了反演的不适定性和提高了反演收敛性。理论模型试算和实际工区应用表明,本文提出的反演方法能够有效利用大角度(一般入射角>30°)的叠前地震数据,获得更精确的地震弹性参数反演结果,并且反演结果忠实于地震资料,与井吻合较好。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄捍东
王彦超
郭飞
张生
纪永祯
刘承汉
关键词叠前反演   Zoeppritz方程   高精度   流体识别     
Abstract: Prestack seismic inversion methods adopt approximations of the Zoeppritz equations to describe the relation between reflection coefficients and P-wave velocity, S-wave velocity, and density. However, the error in these approximations increases with increasing angle of incidence and variation of the elastic parameters, which increases the number of inversion solutions and minimizes the inversion accuracy. In this study, we explore a method for solving the reflection coefficients by using the Zoeppritz equations. To increase the accuracy of prestack inversion, the simultaneous inversion of P-wave velocity, S-wave velocity, and density by using prestack large-angle seismic data is proposed based on generalized linear inversion theory. Moreover, we reduce the ill posedness and increase the convergence of prestack inversion by using the regularization constraint damping factor and the conjugate gradient algorithm. The proposed prestack inversion method uses prestack large-angle seismic data to obtain accurate seismic elastic parameters that conform to prestack seismic data and are consistent with logging data from wells.
Key wordsPrestack inversion   Zoeppritz equation   simultaneous inversion   fluid identification   
收稿日期: 2014-12-22;
基金资助:

本研究由国家973专项(编号:2011CB201104和2011ZX05009)以及国家科技重大专项(编号:2011ZX05006-006)联合资助。

引用本文:   
黄捍东,王彦超,郭飞等. 基于Zoeppritz方程的叠前地震反演方法研究及其在流体识别中的应用[J]. 应用地球物理, 2015, 12(2): 199-211.
Huang Han-Dong,Wang Yan-Chao,Guo Fei et al. Zoeppritz equation-based prestack inversion and its application in fluid identification[J]. APPLIED GEOPHYSICS, 2015, 12(2): 199-211.
 
[1] Aki, K., Richards, P. G., 1980, Quantitative seismology:Theory and methods, Version1. Freeman: W. H. Freeman and Co, 100-170.
[2] Castagna, J. P., Swan, H. W., 1997, Principles of AVO cross plotting: The Leading Edge, 16(4), 337-342.
[3] Castagna, J. P., Swan, H. W., Foster, D. J., 1998, Frameword for AVO gradient and intercept interpretation: Geophysics, 63(3), 948-956.
[4] Gray, D., Goodway, B., and Chen, T., 1999, Bridging the Gap: UsingAVO to Detect Changes in Fundamental Elastic Constants: 69th Ann. Internat. Mtg, Soc. Expl.Geophys., Expanded Abstracts, 852-855.
[5] Huang, H. D., Zhang, R. W., Luo, Q., Zhao, D., and Peng, Y. M., 2009, Subtle trap recognition based on seismic sedimentology-A case study from Shengli oilfield: Applied Geophysics, 6(2), 175-183.
[6] Huang, H. D., Zhang, R. W., Shen, G. Q., Guo, F., and Wang, J. B., 2011, Study of prestack elastic parameter consistency inversion methods: Applied Geophysics, 8(4), 311-318.
[7] Huang, H. D., Wang, Y. C., Guo, F., and Liu, C. H., 2013, High precision prestack inversion algorithm based on Zoeppritz equations: Oil Geophysical Prospecting, 48(5), 740-749.
[8] Meng, X. J., Jiang, X. T., Huang, H. D., and Wei, X. C., 2004, Generalized non-linear P wave and S wave velocity inversion of prestack AVA: Oil Geophysical Prospecting, 39(6), 645-650.
[9] Rutherford, S. R., and Williams, R. H., 1989, Amplitude-versus-offset variations in gas sands: Geophysics, 54(6), 680-688.
[10] Russell, B. H., Hedlin, K., and Hilterman, F. J., 2003, Fluid-property discrimination with AVO: A Biot-Gassmann perspective: Geophysics, 68(1), 29-39.
[11] Russell, B. H., and Gray, D., Hampson, D. P., 2011, Linearized AVO and Poroelasticity: Geophysics, 76(3), C19-C29.
[12] Shuey, R. T., 1985, A simplification of the Zoeppritz equations: Geophysics, 50(4), 609-614.
[13] Wang, B. L., Yin, X. Y., and Zhang, F. C., 2007, Gray approximation-based elastic wave impedance equation and inversion: Oil Geophysical Prospecting, 42(4), 435-439.
[14] Yin, X. Y., Zhang, S. X., Zhang, F. C., and Hao, Q. Y., 2010, Utilizing Russell Approximation-based elastic wave impedance inversion to conduct reservoir description and fluid identification: Oil Geophysical Prospecting, 45(3), 373-380.
[15] Yin, X. Y., Zhang, S. X., and Zhang, F., 2013, Two-term elastic impedance inversion and Russell fluid factor direct estimation method for deep reservoir fluid identification: Chinese Journal of Geophysics, 56(7), 2378-2390.
[16] Zoeppritz, K., 1919, On the reflection and propagation of seismic waves: Gottinger Nachrichten, I, 66-84.
[17] Zheng, X. D., 1991, Approximation of Zoeppritz equation and its application: Oil Geophysical Prospecting, 26(2), 129-144.
[1] 马琦琦,孙赞东. 基于叠前PP-PS波联合广义线性反演的弹性模量提取方法[J]. 应用地球物理, 2018, 15(3-4): 466-480.
[2] 方圆, 张丰麒, 王彦春. 基于双约束项的广义线性多波联合反演[J]. 应用地球物理, 2016, 13(1): 103-115.
[3] 王康宁, 孙赞东, 董宁. 基于各向异性MRF-MAP的叠前反演及在页岩气甜点识别中的应用[J]. 应用地球物理, 2015, 12(4): 533-544.
[4] 宋丽蓉, 于常青, 李桂花, 冯杨洋, 何俊杰. 西藏雄巴地区重力异常特征分析及火山沉积型硼矿成矿预测[J]. 应用地球物理, 2015, 12(4): 516-522.
[5] 谢俊法, 孙成禹, 林美言, 李晶晶. P波广角入射的透射P波特征研究[J]. 应用地球物理, 2015, 12(4): 605-614.
[6] 张如伟, 李洪奇, 张宝金, 黄捍东, 文鹏飞. 基于叠前地震AVA反演的天然气水合物沉积物识别[J]. 应用地球物理, 2015, 12(3): 453-464.
[7] 刘财, 李博南, 赵旭, 刘洋, 鹿琪. 基于频变AVO技术对多尺度裂缝内流体属性反演与识别[J]. 应用地球物理, 2014, 11(4): 384-394.
[8] 骆春妹, 王尚旭, 袁三一. 子波相位不准对叠前波形反演的影响[J]. 应用地球物理, 2014, 11(4): 479-488.
[9] 田玉昆, 周辉, 陈汉明, 邹雅铭, 关守军. Huber-Markov随机场自适应边缘保护贝叶斯地震资料叠前反演[J]. 应用地球物理, 2013, 10(4): 453-460.
[10] 谭茂金, 邹友龙, 张晋言, 赵昕. T2, T1)二维核磁共振数值模拟与流体响应分析[J]. 应用地球物理, 2012, 9(4): 401-413.
[11] 陈学华, 贺振华, 朱四新, 刘伟, 钟文丽. 地震低频信息计算储层流体流度的方法及其应用[J]. 应用地球物理, 2012, 9(3): 326-332.
[12] 崔杰, 韩立国, 刘前坤, 张显文, 韩利. 弱各向异性介质中P-SV波弹性阻抗与流体识别因子[J]. 应用地球物理, 2010, 7(2): 135-142.
[13] 裴发根, 邹长春, 何涛, 史謌, 仇根根, 任科英. 中低孔渗储层岩石弹性参数的流体敏感性研究[J]. 应用地球物理, 2010, 6(1): 1-9.
[14] 裴发根, 邹长春, 何涛, 史謌, 仇根根, 任科英. 中低孔渗储层岩石弹性参数的流体敏感性研究[J]. 应用地球物理, 2010, 7(1): 1-9.
[15] 陈双全, 王尚旭, 张永刚, 季敏. 应用叠前反演弹性参数进行储层预测[J]. 应用地球物理, 2009, 6(4): 375-384.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司