APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (2): 147-156    DOI: 10.1007/s11770-015-0481-5
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于L1范数凸二次规划方法的航空重力测量数据稀疏重构
杨亚鹏1,吴美平1,唐刚2
1. 国防科学技术大学机电工程与自动化学院,长沙 410073
2. 北京化工大学机电工程学院,北京 100029
Airborne gravimetry data sparse reconstruction via L1-norm convex quadratic programming
Yang Ya-Peng1, Wu Mei-Ping1, and Tang Gang2
1. College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, China.
2. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
 全文: PDF (748 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 由于受到国界、测量成本和数据规模等因素的限制,航空重力测量本质上是一种欠奈奎斯特采样方法,本文通过离散傅里叶变换分析了航空重力测量的稀疏性,提出了利用压缩感知理论实现大规模重力异常数据高精度重构的思路。基于压缩感知理论,重力异常数据重构问题可以转化为基于L1范数的凸二次规划问题,本文结合预处理共轭梯度算法,提出了一种改进的内点法来解决此问题。进一步地,我们利用自主研发的SGA-WZ型捷联式航空重力仪在中国某地区进行了航空重力测量试验。通过对试验中测得的重力异常数据进行重构,与常用的线性插值重构方法对比,结果表明:本文提出的基于压缩感知理论的新方法能够以更高的重构精度,更有效地解决大规模重力异常数据的重构问题。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨亚鹏
吴美平
唐刚
关键词压缩感知   内点法   欠奈奎斯特采样   航空重力测量   傅里叶变换     
Abstract: In practice, airborne gravimetry is a sub-Nyquist sampling method because of the restrictions imposed by national boundaries, financial cost, and database size. In this study, we analyze the sparsity of airborne gravimetry data by using the discrete Fourier transform and propose a reconstruction method based on the theory of compressed sensing for large-scale gravity anomaly data. Consequently, the reconstruction of the gravity anomaly data is transformed to a L1-norm convex quadratic programming problem. We combine the preconditioned conjugate gradient algorithm (PCG) and the improved interior-point method (IPM) to solve the convex quadratic programming problem. Furthermore, a flight test was carried out with the homegrown strapdown airborne gravimeter SGA-WZ. Subsequently, we reconstructed the gravity anomaly data of the flight test, and then, we compared the proposed method with the linear interpolation method, which is commonly used in airborne gravimetry. The test results show that the PCG–IPM algorithm can be used to reconstruct large-scale gravity anomaly data with higher accuracy and more effectiveness than the linear interpolation method.
Key wordsCompressed sensing   interior-point method   sub-Nyquist sampling   airborne gravimetry   Fourier transform   
收稿日期: 2014-12-22;
基金资助:

本研究由国家高技术研究发展计划(863计划)(编号:SS2013AA060402)资助。

引用本文:   
杨亚鹏,吴美平,唐刚. 基于L1范数凸二次规划方法的航空重力测量数据稀疏重构[J]. 应用地球物理, 2015, 12(2): 147-156.
Yang Ya-Peng,Wu Mei-Ping,Tang Gang. Airborne gravimetry data sparse reconstruction via L1-norm convex quadratic programming[J]. APPLIED GEOPHYSICS, 2015, 12(2): 147-156.
 
[1] Baye, R., 2002, Airborne gravity measurements over mountainous areas by using a LaCoste & Romberg air-sea gravity meter: Geophysics, 67(3), 807-816.
[2] Boyd, S., and Vandenberghe, L., 2004, Duality, In Boyd, S., and Vandenberghe, L., Eds., Convex Optimization: Cambridge University Press.
[3] Boyd, S., and Vandenberghe, L., 2004, Interior-point methods, In Boyd, S., and Vandenberghe, L., Eds., Convex Optimization: Cambridge University Press.
[4] Cai, R., Zhao, Q., She, D. P., Yang, L., Cao, H., and Yang, Q. Y., 2014, Bernoulli-based random undersampling schemes for 2D seismic data regularization: Applied Geophysics, 11(3), 321-330.
[5] Cai, S. K., Zhang, K. D., Wu, M. P., and Huang, Y. M., 2013, The first airborne scalar gravimetry system based on SINS/DGPS in China: Science China Earth Sciences, 56(12), 2198-2208.
[6] Candès, E., and Romberg, J., 2006, Quantitative robust uncertainty principles and optimally sparse decompositions: Found. Comput. Math., 6(2), 227-254.
[7] Candès, E., and Tao, T., 2006, Near optimal signal recovery from random projections: Universal encoding strategies: IEEE Trans. Inf. Theory, 52(12), 5406-5425.
[8] Candès, E., Romberg, J., and Tao, T., 2006, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information: IEEE Trans. Inf. Theory, 52(2), 489-509.
[9] Candès, E., Romberg, J., and Tao, T., 2006, Stable signal recovery from incomplete and inaccurate measurements: Commun. Pure Appl. Math., 59(8), 1207-1223.
[10] Daubechies, I., Defrise, M., and Demol, C., 2004, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint: Communications on Pure and Applied Mathematics, 57, 1413-1541.
[11] Davenport, M., Duarte, M., Eldar, Y. C., and Kutyniok, G., 2012, Introduction to compressed sensing, In Eldar, Y. C., and Kutyniok, G., Eds., Compressed Sensing: Theory and Applications: Cambridge University Press.
[12] Donoho, D. L., 2006, Compressed sensing: IEEE Trans. Inf. Theory, 52(4), 1289-1306.
[13] Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R., 2004, Least angle regression: Annals of Statistics, 32(2), 407-499.
[14] Elad, M., Matalon, B., and Zibulevsky, M., 2006, Image denoising with shrinkage and redundant representations: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recogn (CVPR), New York, USA, 1924-1931.
[15] Figueiredo, M., and Nowak, R., 2005, A bound optimization approach to wavelet-based image deconvolution: Proceedings of IEEE International Conference on Image Processing (ICIP), Genoa, Italy, 782-785.
[16] Hong, S., 2005, Observability of error states in GPS/INS integration: IEEE Transactions on vehicular technology, 54(2), 731-743.
[17] Huang, Y. M., Olesen, A. V., Wu, M. P., and Zhang, K. D., 2012, SGA-WZ: A new strapdown airborne gravimeter: Sensors, 12, 9336-9348.
[18] Johnson, C., Seidel, J., and Sofer, A., 2000, Interior point methodology for 3-D PET reconstruction: IEEE Trans. Med. Imag., 19(4), 271-285.
[19] Kim, S. J., Koh, K., Lustig, M., Boyd, S., and Gorinevsky, D., 2007, An interior-point method for large-scale l1-regularized least squares: IEEE J. Sel. Top. Signal Process, 1(4), 606-617.
[20] Koh, K., Kim, S. J., and Boyd, S., 2007, An interior-point method for L1-regularized logistic regression: J. Mach. Learning Res., 8, 1519-1555.
[21] Nettleton, L. L., LaCoste, L., and Harrison, J. C., 1960, Test of an airborne gravity meter: Geophysics, 25(1), 181-202.
[22] Nyquist, H., 1928, Certain topics in telegraph transmission theory: Trans. AIEE, 47, 617-644.
[23] Osborne, M., Presnell, B., and Turlach, B., 2000, A new approach to variable selection in least squares problems: IMA Journal of Numerical Analysis, 20(3), 389-403.
[24] Shannon, C., 1949, Communication in the presence of noise: Proc. Inst. Radio Eng., 37(1), 10-21.
[25] Thompson, L., and LaCoste, L., 1960, Aerial gravity measurements: J. Geophys. Res., 65(1), 305-322.
[26] Vandenberghe, L., and Boyd, S., 1995, A primal-dual potential reduction method for problems involving matrix inequalities: Mathemat. Program., 69, 205-236.
[27] Verdun, J., and Klingele, E. E., 2003, The alpine Swiss-French airborne gravity survey: Geophysical Journal International, 152(1), 8-19.
[28] Verdun, J., and Klingele, E. E., 2005, Airborne gravimetry using a strapped-down LaCoste and Romberg air/sea gravity meter system: a feasibility study: Geophysical Prospecting, 53(1), 91-101.
[29] Wang, D. L., Tong, Z. F., Tang, C., and Zhu, H., 2010, An iterative curvelet thresholding algorithm for seismic random noise attenuation: Applied Geophysics, 7(4), 315-324.
[30] Wang, L. H., Zhang, C. D., and Wang, J. Q., 2008, Mathematical models and accuracy evaluation for the airborne gravimetry: J. Geom. Sci. Technol., 25, 68-71.
[31] Xia, Z., and Sun, Z. M., 2006, The technology and application of airborne gravimetry: Sci. Surv. Mapp., 31, 43-46.
[1] 曹中林,曹俊兴,巫芙蓉,何光明,周强,吴育林. 基于分数阶傅里叶变换的混合Cadzow滤波法[J]. 应用地球物理, 2018, 15(2): 271-279.
[2] 李广,肖晓,汤井田,李晋,朱会杰,周聪,严发宝. 基于压缩感知重构算法和形态滤波的AMT近源干扰压制[J]. 应用地球物理, 2017, 14(4): 581-590.
[3] 葛子建, 李景叶, 潘树林, 陈小宏. 一种快速收敛的抗噪POCS地震数据重构方法[J]. 应用地球物理, 2015, 12(2): 169-178.
[4] 张军华, 张彬彬, 张在金, 梁鸿贤, 葛大明. 地震低频信息缺失特征分析及拓频方法研究[J]. 应用地球物理, 2015, 12(2): 212-220.
[5] 勾福岩, 刘财, 刘洋, 冯晅, 崔芳姿. 基于Bregman迭代的复杂地震波场稀疏域插值方法[J]. 应用地球物理, 2014, 11(3): 277-288.
[6] 蔡瑞, 赵群, 佘德平, 杨丽, 曹辉, 杨勤勇. 2D地震数据规则化中Bernoulli随机欠采样方案[J]. 应用地球物理, 2014, 11(3): 321-330.
[7] 张华, 陈小宏, 吴信民. 基于压缩感知理论与傅立叶变换的地震数据重建[J]. 应用地球物理, 2013, 10(2): 170-180.
[8] 蒋甫玉, 黄岩, 燕轲. 由重力异常计算重力全梯度张量的余弦变换法[J]. 应用地球物理, 2012, 9(3): 247-260.
[9] 胥德平, 郭科. 分数阶S变换:第一部分,理论[J]. 应用地球物理, 2012, 9(1): 73-79.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司