APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (2): 137-146    DOI: 10.1007/s11770-015-0491-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
利用Extrapolation Tikhonov正则化算法进行重力梯度三维密度反演
刘金钊1,2,柳林涛2,梁星辉2,叶周润2
1. 中国地震局第一监测中心,天津 300180
2. 中国科学院测量与地球物理研究所,大地测量与地球动力学国家重点实验室,武汉 430077
3D density inversion of gravity gradient data using the extrapolated Tikhonov regularization
Liu Jin-Zhao1,2, Liu Lin-Tao2, Liang Xing-Hui2, and Ye Zhou-Run2
1. First Crust Monitoring and Application Center, China Earthquake Administration, Tianjin 300180, China.
2. State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, CAS, Wuhan, 430077, China.
 全文: PDF (989 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文利用Extrapolation Tikhonov正则化算法处理重力梯度数据三维密度反演的线性不适定问题。与Tikhonov正则化方法相比,Extrapolation Tikhonov正则化方法减小了因正则化参数的引入而带来的反演结果误差,提高了预测数据与观测数据之间的拟合精度。同时为了消除位场数据反演时位置函数快速衰减对反演结果的影响,本文提出了基于重力梯度全张量特征向量法的深度加权函数,模型试验证明了该深度加权函数能有效识别异常体密度分布特征。对澳大利亚Kauring地区实测重力梯度数据进行反演,并和已有研究成果对比分析。结果表明该反演方法能够较好的获取地下异常体的密度分布信息。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘金钊
柳林涛
梁星辉
叶周润
关键词Extrapolation Tikhonov正则化方法   深度加权函数   重力梯度   特征向量     
Abstract: We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations between calculated and observed data. We also use the depth weighting function based on the eigenvector of gravity gradient tensor to eliminate undesired effects owing to the fast attenuation of the position function. Model data suggest that the extrapolated Tikhonov regularization in conjunction with the depth weighting function can effectively recover the 3D distribution of density anomalies. We conduct density inversion of gravity gradient data from the Australia Kauring test site and compare the inversion results with the published research results. The proposed inversion method can be used to obtain the 3D density distribution of underground anomalies.
Key wordsextrapolated Tikhonov regularization   depth weighting   gravity gradient tensor   eigenvector   
收稿日期: 2014-08-02;
基金资助:

本研究由科技部国家重大科学仪器设备开发专项(编号:2011YQ120045)和国家自然科学基金(编号:41074050和41304023)资助。

引用本文:   
刘金钊,柳林涛,梁星辉等. 利用Extrapolation Tikhonov正则化算法进行重力梯度三维密度反演[J]. 应用地球物理, 2015, 12(2): 137-146.
Liu Jin-Zhao,Liu Lin-Tao,Liang Xing-Hui et al. 3D density inversion of gravity gradient data using the extrapolated Tikhonov regularization[J]. APPLIED GEOPHYSICS, 2015, 12(2): 137-146.
 
[1] Bear, G. W., Al-Shukri, H. J., and Rudman, A. J., 1995, Linear inversion of gravity data for 3-D density distributions: Geophysics, 60(5), 1354−1364.
[2] Beiki, M., and Pedersen, L. B., 2010, Eigenvector analysis of gravity gradient tensor to locate geologic bodies: Geophysics, 75(6), 137−149.
[3] Chen, S. H., Zhu, Z. Q., Lu, G. Y., et al., 2013, Inversion of gravity gradient tensor based on preconditioned conjugate gradient: Journal of Central South University(Science and Technology), 44(2), 619−625.
[4] Commer, M., 2011, Three-dimensional gravity modelling and focusing inversion using rectangular meshes: Geophysical Prospecting, 59(5), 966−979.
[5] Dransfield, M., 2007, Airborne gravity gradiometry in the search for mineral deposits: Proceedings on Mineral Exploration edited by B. Milkereit, Fifth Decennial International Conference, 341−354
[6] Feng, J., Meng, X. H., Chen, Z. X., et al., 2014, The investigation and application of three-dimensional density interface: Chinese J. Geophys.(in Chinese), 57(1), 287−294.
[7] Guo, W. B., Zhu, Z. Q., and Lu, G. Y., 2011, Quasi-BP neural network inversion of gravity gradient tensor: Journal of Central South University (Science and Technology), 42(12), 3797−3803.
[8] Guo, L. H., Meng, X. H., Shi, L., et al., 2009, 3-D correlation imaging for gravity and gravity gradiometry data: Chinese J. Geophys. (in Chinese), 52(4), 1092−1106.
[9] Hämarik, U., Palm, R., and Raus, T., 2007, Use of extrapolation in regularization methods: Journal of Inverse and Ill-Posed Problems, 15(3), 277−294.
[10] Hämarik, U., Palm, R., and Raus, T., 2008, Extrapolation of Tikhonov and Lavrentiev regularization methods: 6th International Conference on Inverse Problems in Engineering: Theory and Practice; Journal of Physics: Conference Series, 135(1), 1−8.
[11] Ke, X. P., Wang, Y., Xu, H. Z., et al., 2009, The three-dimensional crustal structure of the Tibetan plateau from gravity inversion:Progress in Geophysics (in Chinese), 24(2), 448−455.
[12] Lee, J. B., 2001, FALCON gravity gradiometer technology: Exploration Geophysics, 32, 247−250.
[13] Li, Y. G., and Oldenburg, D. W., 1996, 3-D inversion of magnetic data: Geophysics, 61(2), 394−408.
[14] Li, Y. G., and Oldenburg, D. W., 1998, 3-D inversion of gravity data: Geophysics, 63(1), 109−119.
[15] Li, Y. G., 2001, 3-D inversion of gravity gradiometer data: 71st Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts,, Expanded Abstracts, 1470−1473.
[16] Liu, Y. P., Wang, Z. W., Du, X. J., et al., 2013, 3D constrained inversion of gravity data based on Extrapolation Tikhonov regularization algorithm: Chinese J.Geophys.(in Chinese), 56(5), 1650−1659.
[17] Martinez, C., and Li, Y. G., 2012, Understanding gravity gradiometry processing and interpretation through the Kauring test site data: 22nd ASEG International Geophysical Conference and Exhibition, 1−4.
[18] Palm, R., 2010, Numerical comparison of regularization algorithms for solving ill-posed problems: PhD Thesis, University of Tartu.
[19] Rama, P., Rao, K. V., Swamy, I. V., and Radhakrishna Murthy, 1999, Inversion of gravity anomalies of three-dimensional density interfaces: Computers & Geoscience, 25(8), 887−896.
[20] Pawlowski, B., 1998, Gravity gradiometry in resource exploration: The Leading Edge, 17, 51−52.
[21] Rama, P., Rao, K. V., Swamy, I. V., and Radhakrishna, M., 1999, Inversion of gravity anomalies of three-dimensional density interfaces: Computers & Geoscience, 25(8), 887−896.
[22] Hämarik, U., PalmR., and Raus, T., 2010, Extrapolation of Tikhonov regularization method, Mathematical Modelling and Analysis, 15(1), 55−68.
[23] Vasilevsky, A., Droujinine, A., and Evans, R., 2005, Regularized inversion of 3D full tensor gradient (FTG) data for dynamic reservoir monitoring: 75th Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 24, 700−703.
[24] Wang, Z. W., Xu, S., Liu, Y. P., et al., 2014, Extrapolated Tikhonov method and inversion of 3D density images of gravity data: Applied Geophysics, 11(2), 139−148.
[25] Wang, H. R., Chen C., and Du, J. S., 2013, 3-D inversion method and application of gravity gradient tensor data: Oil Geophysical Prospecting, 48(3), 475−481.
[26] Wedge, D., 2013, Mass anomaly depth estimation from full tensor gradient gravity data: Applications of Computer Vision, IEEE workshop, 526−533.
[27] Zhdanov, M.S., Ellis, R.G., Mukherjee,S., et al, 2002, Regularized focusing inversion of 3-D gravity tensor data: 72nd Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 751−754.
[28] Zhdanov, M. S., Robert Ellis, and Souvik Mukherjee, 2004, Three-dimensional regularized focusing inversion of gravity gradient tensor component data: Geophysics, 69(4), 925−937.
[1] 侯振隆,黄大年,王恩德,程浩. 基于多级混合并行算法的重力梯度数据三维密度反演研究[J]. 应用地球物理, 2019, 16(2): 141-153.
[2] 张代磊,黄大年,于平,袁园. 基于平移不变量小波的全张量重力梯度数据滤波[J]. 应用地球物理, 2017, 14(4): 606-619.
[3] 王泰涵,黄大年,马国庆,孟兆海,李野. 改进的预处理共轭梯度快速算法在三维重力梯度数据反演中的应用[J]. 应用地球物理, 2017, 14(2): 301-313.
[4] 王祝文, 许石, 刘银萍, 刘菁华. 重力数据3D密度成像中EXTR方法的各参数变化对反演结果的影响[J]. 应用地球物理, 2014, 11(2): 139-148.
[5] 袁园, 黄大年, 余青露, 耿美霞. 全张量重力梯度数据滤波处理[J]. 应用地球物理, 2013, 10(3): 241-250.
[6] 蒋甫玉, 黄岩, 燕轲. 由重力异常计算重力全梯度张量的余弦变换法[J]. 应用地球物理, 2012, 9(3): 247-260.
[7] 蒋甫玉, 高丽坤. 基于改进的小子域滤波的重力异常及重力梯度张量边缘增强[J]. 应用地球物理, 2012, 9(2): 119-130.
[8] 孙鹏飞, 吴燕冈, 杨春成, 韩兆红, 范美宁. 重力梯度法的角点位置最优化选取研究[J]. 应用地球物理, 2011, 8(4): 269-276.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司