APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (2): 157-168    DOI: 10.1007/s11770-015-00487-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于吸收衰减补偿的多分量高斯束叠前深度偏移
吴娟1,2,陈小宏1,2,白敏1,2,刘国昌1,2
1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
2. 中国石油大学(北京)海洋石油勘探国家工程实验室,北京 102249
Attenuation compensation in multicomponent Gaussian beam prestack depth migration
Wu Juan1,2, Chen Xiao-Hong1,2, Bai Min1,2, and Liu Guo-Chang1,2
1. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, China.
2. National Engineering Laboratory of Offshore Oil Exploration, China University of Petroleum, Beijing 102249, China.
 全文: PDF (1155 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 高斯束叠前深度偏移是对地下介质进行精确成像的方法之一,多分量地震资料的叠前深度偏移技术可以对复杂构造进行更准确的成像。由于实际地下介质具有粘滞性,研究粘弹性叠前深度偏移具有一定的现实意义。本文采用高斯束偏移方法对多分量地震数据进行吸收衰减补偿,首先利用高斯束模拟粘弹性介质中传播的地震波,并在模拟中引入与品质因子Q有关的复速度和精确的粘弹性Zoeppritz方程,合成地震记录;然后给出纵波和转换波共炮域高斯束叠前深度偏移原理,在此基础上推导补偿吸收衰减的表达式,校正Q引起的振幅衰减和相位畸变,实现基于吸收衰减补偿的多分量高斯束叠前深度偏移,并分析Q误差对偏移结果的影响。数值实验表明,在考虑地下介质的粘滞性时,本文方法具有更高的成像分辨率。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴娟
陈小宏
白敏
刘国昌
关键词衰减补偿   多分量   高斯束   粘弹性正演   叠前深度偏移     
Abstract: Gaussian beam prestack depth migration is an accurate imaging method of subsurface media. Prestack depth migration of multicomponent seismic data improves the accuracy of imaging subsurface complex geological structures. Viscoelastic prestack depth migration is of practical significance because it considers the viscosity of the subsurface media. We use Gaussian beam migration to compensate for the attenuation in multicomponent seismic data. First, we use the Gaussian beam method to simulate the wave propagation in a viscoelastic medium and introduce the complex velocity Q-related and exact viscoelastic Zoeppritz equation. Second, we discuss PP- and PS-wave Gaussian beam prestack depth migration algorithms for common-shot gathers to derive expressions for the attenuation and compensation. The algorithms correct the amplitude attenuation and phase distortion caused by Q, and realize multicomponent Gaussian beam prestack depth migration based on the attenuation compensation and account for the effect of inaccurate Q on migration. Numerical modeling suggests that the imaging resolution of viscoelastic Gaussian beam prestack depth migration is high when the viscosity of the subsurface is considered.
Key wordsAttenuation compensation   multicomponent   Gaussian beam   viscoelastic simulation   prestack depth migration   
收稿日期: 2014-07-18;
基金资助:

本研究由国家自然科学基金项目(编号:U1262207)、国家科技重大专项课题(编号:2011ZX 05023-005-005,2011ZX05019-006)和中国石油科技创新基金项目(编号:2013D-5006-0303)联合资助。

引用本文:   
吴娟,陈小宏,白敏等. 基于吸收衰减补偿的多分量高斯束叠前深度偏移[J]. 应用地球物理, 2015, 12(2): 157-168.
Wu Juan,Chen Xiao-Hong,Bai Min et al. Attenuation compensation in multicomponent Gaussian beam prestack depth migration[J]. APPLIED GEOPHYSICS, 2015, 12(2): 157-168.
 
[1] Cavalca, M., Fletcher, R., and Riedel, M., 2013, Q-compensation in complex media-ray based and wavefield extrapolation approaches: 83th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 3831−3835.
[2] Cerveny, V., 1985, Gaussian beam synthetic seismograms. J. geophys, 58(1−3), 44−72.
[3] Cerveny, V., 2007, A note on dynamic ray tracing in ray-centered coordinates in anisotropic inhomogeneous media: Studia Geophysica et Geodaetica, 51, 411−422.
[4] Cerveny V., 1983, Synthetic body wave seismograms for laterally varying layered structures by the Gaussian beam method: Geophysical Journal of the Royal Astronomical Society, 73, 389−426.
[5] Fletcher, R. P., Nichols, D., and Cavalca, M., 2012, Wave path-consistent Effective Q Estimation for Q-compensated Reverse-time Migration: 74th EAGE Annual Meeting, Expanded Abstracts, A020.
[6] Gray, S. H., 2005, Gaussian beam migration of common-shot records: Geophysics, 70(4), S71−S77.
[7] Gray, S. H., and Bleistein, N., 2009, True-amplitude Gaussian-beam migration: Geophysics, 74(2), S11−S23.
[8] Hale, D., 1992a, Migration by the Kirchhoff, slant stack, and Guassian beam methods: Colorado School of Mines Center for Wave Phenomena Report, 121.
[9] Hale, D., 1992b, Computational aspects of Gaussian beam migration: Colorado School of Mines Center for Wave Phenomena Report, 139.
[10] Han, J., Wang, Y., and Lu, J. 2013, Multi-component Gaussian beam prestack depth migration. Journal of Geophysics and Engineering, 10(5), 055008.
[11] Hill, N. R., 1990, Gaussian beam migration: Geophysics, 55, 1416−1428.
[12] Hill, N. R., 2001, Prestack Gaussian-beam depth migration: Geophysics, 66, 1240−1250.
[13] Li, Q. Z., 1993, High-resolution seismic data processing: Petroleum Industry Press, Beijing, 37−38.
[14] Mittet, R., Sollie, R., and Hokstad, K., 1995, Prestack depth migration with compensation for absorption and dispersion: Geophysics, 60(5), 1485−1494.
[15] Nowack, R. L., Chen, W. P., and Tseng, T. L., 2010, Application of Gaussian-beam migration to multiscale imaging of the lithosphere beneath the Hi-CLIMB array in Tibet: Bulletin of the Seismological Society of America, 100(4), 1743−1754.
[16] Popov, M. M., Semtchenok, N. M., Popov, P. M., and Verdel, A. R., 2010, Depth migration by the Gaussian beam summation method: Geophysics, 75(2), S81−S93.
[17] Traynin, P., Liu, J., and Reilly, J., 2008, Amplitude and bandwidth recovery beneath gas zones using Kirchhoff prestack depth Q-migration: 78th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 2412−2416.
[18] Udias, A., 1999, Principles of seismology: Cambridge University Press, England.
[19] Xie, Y., Notfors, C., Sun, J., Xin, K., Biswal, A., and Balasubramaniam, M. K., 2010, 3D prestack beam migration with compensation for frequency dependent absorption and dispersion: 72nd EAGE Conference and Exhibition incorporating SPE EUROPEC.
[20] Xie, Y., Xin, K., Sun, J., and Notfors, C., 2009, 3D prestack depth migration with compensation for frequency dependent absorption and dispersion: 79th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 2919−2923.
[21] Yan, H. Y., and Liu, Y., 2013, Visco-acoustic prestack reverse-time migration based on the time-space domain adaptive high-order finite-difference method: Geophysical Prospecting, 61(5), 941−954.
[22] Zhang, Y., Karazincir, M., Notfors, C., Sun, J., and Hung, B., 2002, Amplitude preserving v(z) prestack Kirchhoff migration, demigration and modeling: Migration, 8(1), 3.
[23] Zhang, Y., Zhang, P., and Zhang, H. Z., 2010, Compensating for visco-acoustic effects in reverse-time migration: 80th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 3160−3164.
[24] Zhao, Y., Liu Y., and Ren Z. M., 2014, Viscoacoustic prestack reverse time migration based on the optimal time-space domain high-order finite-difference method: Applied Geophysics, 11(1), 50−62.
[25] Zhu, T., Harris, J. M., and Biondi, B., 2014, Q-compensated reverse-time migration. Geophysics, 79(3), S77−S87.
[1] 宫昊,陈浩,何晓,苏畅,王秀明,王柏村,严晓辉. 基于单偶极混合测量模式的反射波测井方法研究[J]. 应用地球物理, 2018, 15(3-4): 393-400.
[2] 孟庆鑫,胡祥云,潘和平,周峰. 地-井瞬变电磁多分量响应数值分析[J]. 应用地球物理, 2017, 14(1): 175-186.
[3] 刘少勇, 王华忠, 刘太臣, 胡英, 张才. 基于旅行时梯度场的Kirchhoff PSDM角道集生成方法研究[J]. 应用地球物理, 2015, 12(1): 64-72.
[4] 韩建光, 王赟, 韩宁, 邢占涛, 芦俊. 多波高斯束叠前深度偏移速度分析[J]. 应用地球物理, 2014, 11(2): 186-196.
[5] 李芳, 王守东, 陈小宏, 刘国昌, 郑强. 径向道域变步长采样叠前非稳态反褶积处理方法研究[J]. 应用地球物理, 2013, 10(4): 423-432.
[6] 周辉, 林鹤, 盛善波, 陈汉明, 王颖. 补偿吸收衰减的高角度叠前深度偏移方法[J]. 应用地球物理, 2012, 9(3): 293-300.
[7] 王璞, 胡天跃. 转换波AVO近似及其在PP/PS联合反演中的应用[J]. 应用地球物理, 2011, 8(3): 189-196.
[8] 王守东. 基于反演的衰减补偿方法[J]. 应用地球物理, 2011, 8(2): 150-157.
[9] 杜启振, 孙瑞艳, 秦童, 朱钇同, 毕丽飞. 多分量联合逆时偏移最佳匹配层吸收边界[J]. 应用地球物理, 2010, 7(2): 166-173.
[10] 芦俊, 王赟, 杨春颖. 瞬时极化滤波法压制面波[J]. 应用地球物理, 2010, 6(1): 88-97.
[11] 张凯, 李振春, 曾同生, 董晓春. 角度域共成像点道集剩余曲率法偏移速度分析[J]. 应用地球物理, 2010, 6(1): 49-56.
[12] 张凯, 李振春, 曾同生, 董晓春. 角度域共成像点道集剩余曲率法偏移速度分析[J]. 应用地球物理, 2010, 7(1): 49-56.
[13] 芦俊, 王赟, 杨春颖. 瞬时极化滤波法压制面波[J]. 应用地球物理, 2010, 7(1): 88-97.
[14] 赵太银, 胡光岷, 贺振华, 黄德济. 二阶精度广义非线性全局最优的偏移速度反演方法[J]. 应用地球物理, 2009, 6(2): 138-149.
[15] 叶月明, 李振春, 徐秀刚, 朱绪峰, 仝兆岐. 基于单程波方程的角度域保幅偏移[J]. 应用地球物理, 2009, 6(1): 50-58.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司