APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (4): 437-446    DOI: 10.1007/s11770-014-0458-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
交错网格中基于波数域插值的波场分离方法研究
杜启振,张明强,陈晓冉,公绪飞,郭成锋
中国石油大学(华东)地球科学与技术学院,山东青岛 266580
True-amplitude wavefield separation using staggered-grid interpolation in the wavenumber domain
Du Qi-Zhen1, Zhang Ming-Qiang1, Chen Xiao-Ran1, Gong Xu-Fei1, and Guo Cheng-Feng1
1. School of Geosciences, China University of Petroleum (East China), Qingdao, Shandong 266580.
 全文: PDF (824 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 应用多分量地震资料进行成像时通常需要先做波场分离,然后再对分离的波型进行成像。其中,波场分离可以在空间域或波数域实现。然而,由于用交错网格有限差分进行弹性波场数值模拟时,用来进行波数域波场分离的质点振动速度分量定义在不同网格节点上,本文提出了利用波数域插值方法来估算同一网格节点所需质点振动速度值;进而给出了先进行波数域插值后进行波场分离的波数域保幅波场分离方案。数值实验结果表明波数域插值方法具有较高的插值精度且保幅波场分离方法具有较好的保幅性,将本文方法进一步应用于弹性波逆时偏移可以获得保幅性较好的成像结果且对存在一定程度速度误差情况具有较好的适应性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜启振
张明强
陈晓冉
公绪飞
郭成锋
关键词波场分离   保幅性   交错网格有限差分   波数域插值   逆时偏移     
Abstract: Wavefield separation of multicomponent seismic data to image subsurface structures can be realized in either the space domain or the wavenumber domain. However, as the particle velocity components used in the wavenumber-domain wavefield separation are not defined at the same grid point with the staggered-grid finite-difference method for elastic wavefield simulation, we propose the wavenumber-domain interpolation method to estimate the required values at the common grid points prior to the wavenumber-domain true-amplitude wavefield separation. Moreover, numerical experiments show that the wavenumber-domain interpolation method has high interpolation accuracy and the true-amplitude wavefield separation method shows good amplitude preservation. The application of the proposed methodology to elastic reverse-time migration can obtain good amplitude-preserved images even in the case of some velocity error.
Key wordswavefield separation   amplitude preservation   staggered-grid finite difference   wavenumber domain interpolation   reverse-time migration   
收稿日期: 2013-11-16;
基金资助:

本研究由国家自然科学基金(编号:41174100)、国家科技重大专项(编号:2011ZX05019-008-08)和中国石油天然气集团公司(编号:2014A-3609)联合资助。

引用本文:   
杜启振,张明强,陈晓冉等. 交错网格中基于波数域插值的波场分离方法研究[J]. 应用地球物理, 2014, 11(4): 437-446.
DU Qi-Zhen,ZHANG Ming-Qiang,CHEN Xiao-Ran et al. True-amplitude wavefield separation using staggered-grid interpolation in the wavenumber domain[J]. APPLIED GEOPHYSICS, 2014, 11(4): 437-446.
 
[1] Aki, K., and Richards, P. G., 2002, Quantitative Seismology (2nd ed). California: University Science Books.
[2] Chattopadhyay, S., and McMechan, G. A., 2008, Imaging conditions for prestack reverse-time migration: Geophysics, 73(3), S81-S89.
[3] Dellinger, J., 1991, Anisotropic Seismic Wave Propagation [Doctor’s thesis]. California: Stanford University, 65-69.
[4] Dellinger, J., and Etgen, J., 1990, Wavefield separation in two-dimensional anisotropic media: Geophysics, 55(7), 914-919.
[5] Devaney, A. J., Oristagliot, M. L., 1986, A plane-wave decomposition for elastic wave fields applied to the separation of P-waves and S-waves in vector seismic data: Geophysics, 51(2), 419-423.
[6] Dong, L. G., Ma Z. T., Cao, J. Z., Wang, H. Z., Geng, J. H., Lei, B., and Xu, S. Y., 2000, A staggered-grid high-order difference method of one-order elastic wave equation: Chinese J. Geophys (in Chinese), 43(3), 411-419.
[7] Du, Q., Gong, X., Zhang, M., Zhu, Y. T., and Fang, G., 2014, 3D PS-wave imaging with elastic reverse-time migration: Geophysics, 79(5), S173-S184.
[8] Du, Q. Z., Zhu, Y. T., and Ba, J., 2012, Polarity reversal correction for elastic reverse time migration: Geophysics, 77(2), S31-S41.
[9] Etgen, J. T., 1988, Prestacked migration of P- and SV-waves: 58th Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 972-975.
[10] Feng, X., Zhang, X. W., Liu, C., Wang, D., and Yang, Q. J., 2011, Separating P-P and P-SV wave by parabolic Radon transform with multiple coherence: Chinese J. Geophys (in Chinese), 54(2), 304-309.
[11] Li, Z. Y., Liang, G. H., and Gu, B. L., 2013, Improved method of separating P- and S-waves using divergence and curl: Chinese J. Geophys (in Chinese), 56(6), 2012-2022.
[12] Liu, Y., 2014, Optimal staggered-grid finite-difference schemes based on least squares for wave equation modeling: Geophysical Journal International,197(2), 1033-1047.
[13] Madariaga, R., 1976, Dynamics of an expanding circular fault: Bull. Seismol. Soc. Am., 66(3), 639-666.
[14] Martin, G. S., Wiley, R., and Marfurt, K. J., 2006, Marmousi2: An elastic upgrade for Marmousi: The Leading Edge, 25, 156-166.
[15] Moczo, P., Kristek, J., Vavrycuk, V., Archuleta, R. J., and Halada, L., 2002, 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume and arithmetic averaging of elastic moduli and densities: Bull. Seismol. Soc. Am., 92(8), 3042-3066.
[16] Oristaglio, M. L., Devany, A. J., and Track, A., 1985, Separation of P-waves and S-waves in borehole seismic data: 55th Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 52-55.
[17] Schleicher, J., Costa, J. C., and Novais, A., 2008, A comparison of imaging conditions for wave-equation shot-profile migration: Geophysics, 73(6), S219-S227.
[18] Sun, R., 1999, Separating P- and S-waves in a prestack 2-dimensional elastic seismogram: 61th EAGE Conference & Exhibition, Extended Abstracts, 6-23.
[19] Sun, R., Chow, J. D., and Chen, K. J., 2001, Phase correction in separating P- and S-waves in elastic data: Geophysics, 66(5), 1515-1518.
[20] Sun, R., McMechan, G. A., and Chuang, H. H., 2011, Amplitude balancing in separating P- and S-waves in 2D and 3D elastic data: Geophysics, 76(3), S103-S113.
[21] Sun, R., McMechan, G. A., Hsiao, H. S., and Chow, J., 2004, Separating P- and S-waves in prestack 3D elastic seismograms using divergence and curl: Geophysics, 69(1), 286-297.
[22] Virieux, J., 1984, SH-wave propagation in heterogeneous media: velocity-stress finite-difference method: Geophysics, 49(11), 1933-1957.
[23] Virieux, J., 1986, P-SV wave propagation in heterogeneous media: velocity-stress finite difference method: Geophysics, 51(4), 889-901.
[24] Yan, J., and Sava, P., 2009a, Elastic wave-mode separation for VTI media: Geophysics, 74(5), WB19-WB32.
[25] Yan, J., and Sava, P., 2009b , Elastic wave mode separation for TTI media: 79th Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 1197-1021.
[26] Yan, J., and Sava, P., 2009c, 3D elastic wave mode separation for TTI media: 79th A Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 4294-4298.
[27] Yao, D. Z., Zhou, X. X., and Zhong, B. S., 1993, Method for separating out P-wave or S-wave in VSP data and its application: OGP (in Chinese), 28(5), 623-628.
[28] Yoon, K., and Marfurt, K. J., 2006, Reverse-time migration using the Poynting vector: Exploration Geophysics, 37(1), 102-107.
[29] Zhang, G. Q., and Zhou, H. B., 1995, Separating compressional wave from shear wave in surface seismic records: OGP (in Chinese), 30(2), 181-191.
[30] Zhang, M., Du, Q. Z., Fang, G., Gong, X. F., and Zhu, Y. T., 2013, Phase correction of elastic reverse time migration section: 83rd Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 1713-1717.
[31] Zhang, Q. S., and McMechan, G. A., 2010, 2D and 3D elastic wavefield vector decomposition in the wavenumber domain for VTI media: Geophysics, 75(3), D13-D26.
[32] Zhang, Y., and Sun, J., 2009, Practical issues of reverse time migration: True-amplitude gathers, noise removal and harmonic-source encoding: First Break, 27(1), 53-60.
[1] 刘国峰,孟小红,禹振江,刘定进. 多GPU TTI 介质逆时偏移*[J]. 应用地球物理, 2019, 16(1): 61-69.
[2] 宫昊,陈浩,何晓,苏畅,王秀明,王柏村,严晓辉. 基于单偶极混合测量模式的反射波测井方法研究[J]. 应用地球物理, 2018, 15(3-4): 393-400.
[3] 薛浩,刘洋. 基于多方向波场分离的逆时偏移成像方法[J]. 应用地球物理, 2018, 15(2): 222-233.
[4] 孙小东,贾延睿,张敏,李庆洋,李振春. 伪深度域最小二乘逆时偏移方法及应用[J]. 应用地球物理, 2018, 15(2): 234-239.
[5] 任英俊,黄建平,雍鹏,刘梦丽,崔超,杨明伟. 窗函数交错网格有限差分算子及其优化方法[J]. 应用地球物理, 2018, 15(2): 253-260.
[6] 杨佳佳,栾锡武,何兵寿,方刚,潘军,冉伟民,蒋陶. 基于矢量波场逆时偏移的保幅角道集提取方法[J]. 应用地球物理, 2017, 14(4): 492-504.
[7] 孙小东,李振春,贾延睿. 基于变网格的不同观测系统下的逆时偏移[J]. 应用地球物理, 2017, 14(4): 517-522.
[8] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[9] 孙小东,葛中慧,李振春. 基于共轭梯度法和互相关的最小二乘逆时偏移及应用[J]. 应用地球物理, 2017, 14(3): 381-386.
[10] 孔雪,王德营,李振春,张瑞香,胡秋媛. 平面波预测滤波分离绕射波方法研究[J]. 应用地球物理, 2017, 14(3): 399-405.
[11] 孙小东,葛中慧,李振春,洪瑛. 黏声VTI介质逆时偏移成像稳定性研究[J]. 应用地球物理, 2016, 13(4): 608-613.
[12] 杨佳佳,栾锡武 ,方刚,刘欣欣,潘军,王小杰. 基于保幅波场分离的弹性波逆时偏移方法研究[J]. 应用地球物理, 2016, 13(3): 500-510.
[13] 张宫, 李宁, 郭宏伟, 武宏亮, 罗超. 远探测声反射波测井裂缝识别条件分析[J]. 应用地球物理, 2015, 12(4): 473-481.
[14] 刘强, 韩立国, 陈竞一, 陈雪, 张显娜. 可变频震源混合采集数据波场分离研究[J]. 应用地球物理, 2015, 12(3): 327-333.
[15] 蔡晓慧, 刘洋, 任志明, 王建民, 陈志德, 陈可洋, 王成. 三维声波方程优化有限差分正演[J]. 应用地球物理, 2015, 12(3): 409-420.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司