APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (4): 429-436    DOI: 10.1007/s11770-014-0450-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
爆炸与天然地震的区别
Cho, Kwang-Hyun
Petroleum Technology Institute, Korea National Oil Corporation, Anyang 431-711, South Korea
Discriminating between explosions and earthquakes
Cho, Kwang-Hyun1
1. Petroleum Technology Institute, Korea National Oil Corporation, Anyang 431-711, South Korea
 全文: PDF (363 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文通过地震正演模型和面波振幅数据对比分析了天然地震、爆炸,与核试验数据, 以探索改进辨别天然地震与爆炸的方法。所提的方法是基于波数域和频率域的双积分变换解。用于研究的地震事件都发生在北朝鲜, 其中包括2001年6月26日(39.212°N,125.383°E)和2001年10月30日(38.748°N,125.267°E)所记录的爆炸数据, 2006年10月9日(41.275°N,129.095°E)所记录的一次核试验数据、以及2002年4月14日(39.207°N,125.686°E)和2002年6月7日(38.703°N,125.638°E)所记录的两次天然地震。基于这些数据通过地震波分析与理论模拟表明爆炸引起的地震与天然地震有着不同的波型特征。爆炸引起的信号特征是P波的能量较S波强, 在爆炸记录上0.05–0.5Hz频率之间Rg波清晰呈现,而在然地震记录上没有。这是由于爆炸地震记录上P波是优势波,与SH成分发生了耦合。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
Cho
Kwang-Hyun
关键词爆炸   地震   核试验   P波   Rg波   数值模拟     
Abstract: Earthquake, explosion, and a nuclear test data are compared with forward modeling and band-pass filtered surface wave amplitude data for exploring methodologies to improve earthquake–explosion discrimination. The proposed discrimination method is based on the solutions of a double integral transformation in the wavenumber and frequency domains. Recorded explosion data on June 26, 2001 (39.212°N, 125.383°E) and October 30, 2001 (38.748°N, 125.267°E), a nuclear test on October 9, 2006 (41.275°N, 129.095°E), and two earthquakes on April 14, 2002 (39.207°N, 125.686°E) and June 7, 2002 (38.703°N, 125.638°E), all in North Korea, are used to discriminate between explosions and earthquakes by seismic wave analysis and numerical modeling. The explosion signal is characterized by first P waves with higher energy than that of S waves. Rg waves are clearly dominant at 0.05–0.5 Hz in the explosion data but not in the earthquake data. This feature is attributed to the dominant P waves in the explosion and their coupling with the SH components.
Key wordsexplosion   earthquake   nuclear test   P wave   Rg wave   numerical modeling   
收稿日期: 2014-05-08;
引用本文:   
Cho,Kwang-Hyun. 爆炸与天然地震的区别[J]. 应用地球物理, 2014, 11(4): 429-436.
Cho ,Kwang-Hyun . Discriminating between explosions and earthquakes[J]. APPLIED GEOPHYSICS, 2014, 11(4): 429-436.
 
[1] Bonner, J., Russell, L., Harkrider, D., Reiter, D., and Herrmann, R., 2006, Development of a time-domain variable period surface wave magnitude measurement procedure for application at regional and teleseismic f America, 96, 678-696.
[2] Bonner, J., Stroujkova, A., and Anderson, D. N., 2011, Improving earthquake and explosion discrimination by using Love and Rayleigh wave magnitudes, in “2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies” sponsored by the Air Force Research Laboratory.
[3] Cho, K. H., and Lee, K., 2006, Dispersion of Rayleigh waves in the Korean Peninsula: Journal of the Korean Geophysical Society, 9, 231-240.
[4] Cho, K. H., Herrmann, R. B., Ammon, C. J., and Lee, K., 2007, Imaging the upper crust of the Korean Peninsula by surface wave tomography: Bulletin of the Seismological Society of America, 97, 198-207, doi: 10.1785/0120060096.
[5] Cho, K. H., Lee, S.-H., and Kang, I. -B., 2011a, Crustal structure of the Korean Peninsula using surface wave dispersion and numerical modeling: Pure and Applied Geophysics, 168, 1587-1598, doi: 10.1007/s00024-011-0262-x.
[6] Cho, K. -H., Chen, H. W., Kang, I. -B., and Lee, S. -H., 2011b, Crust and upper mantle structures of the region between Korea and Taiwan by surface wave dispersion study: Geoscience Journal, 15, 71-81, doi: 10.1007/s12303-011-0009-9.
[7] Cho, Kwang Hyun, 2014, Discovery of a surface-wave velocity anomaly in the West Sea of South Korea:Exploration Geophysics, 45, 86-93.
[8] Chun, K. -Y., Wu, Y., and Henderson, G. A., 2011, Magnitude estimation and source discrimination: A close look at the 2006 and 2009 North Korean underground nuclear explosions : Bulletin of the Seismological Society of America, 101, 1315-1329.
[9] Hong, T. -K., Baag, C. -E., Choi, H., and Sheen, D. -H, 2008, Regional seismic observations of the 9 October 2006 underground nuclear explosion in North Korea and the influence of crustal structure on regional phases: Journal of Geophysical Research, 113, B03305, doi: 10.1029/2007JB004950.
[10] Hong, T. -K. and Rhie, J., 2009, Regional source scaling of the 9 October 2006 underground nuclear explosion in North Korea: Bulletin of the Seismological Society of America, 99, 2523-2540.
[11] Howard J. P., and Steven, R. T., 2008, Effects of shock-induced tensile failure on mb-Ms discrimination: Contrasts between historic nuclear explosions and the North Korean test of 9 October 2006, Geophysical Research Letters: 35, L14301, doi: 10.1029/2008GL034211.
[12] Hudson, J. A., 1969, A quantitative evaluation of seismic signals at teleseismic distances II. Body waves and surface waves from an extended source: Geophys. J., 18, 353-370.
[13] Kafka, A. L., 1990, Rg as a depth discriminant for earthquakes and explosions - a case study in New England: Bulletin of the Seismological Society of America, 80, 373-394.
[14] Kremenetskaya, E., Asming, V., Jevtjugina, Z., and Ringdal, F., 2002, Study of regional surface waves and frequency-dependent Ms:mb discrimination in the European Arctic: Pure and Applied Geophysics, 159, 721-733.
[15] Saikia, C. K., 1992, Numerical Study of Quarry Generated Rg as a Discriminant for Earthquakes and Explosions - Modeling of Rg in Southwestern New England: Journal of Geophysical Research, 97, 11,057-11,072.
[16] Walter, W. R., Matzel, E., Pasyanos, M., Harris, D. B., Gok, R., Ford, S. R., 2007, Empirical observations of earthquake-explosion discrimination using P/S ratios and implications for the sources of explosion S-waves: “MRR2007-29th Research Review on Nuclear Explosion Monitoring Technologies” sponsored by the Air Force Research Laboratory.
[17] Yoo, H. J., Herrmann, R. B., Cho, K. H., and Lee, K., 2007, Imaging the three-dimensional crust of the Korean Peninsula by joint inversion of surface-wave dispersion and teleseismic receiver functions: Bulletin of the Seismological Society of America, 97, 1002-1011, doi: 10.1785/0120060134.
[1] 张振波, 轩义华, 邓勇. 斜缆地震道集资料的叠前同时反演*[J]. 应用地球物理, 2019, 16(1): 99-108.
[2] 赵虎,徐浩,邸志欣,张金淼,刘志鹏. 采集参数对观测系统质量影响分析[J]. 应用地球物理, 2018, 15(3-4): 413-419.
[3] 陈猛,刘嘉辉,崔永福,胡天跃,陈飞旭,匡伟康,张振. 基于迭代虚同相轴方法的叠后层间多次波衰减[J]. 应用地球物理, 2018, 15(3-4): 491-499.
[4] 戴世坤,赵东东,张钱江,李昆,陈轻蕊,王旭龙. 基于泊松方程的空间波数混合域重力异常三维数值模拟[J]. 应用地球物理, 2018, 15(3-4): 513-523.
[5] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[6] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[7] 高峰,魏建新,狄帮让. 地震物理模拟中Q值测量方法[J]. 应用地球物理, 2018, 15(1): 46-56.
[8] 孔选林,陈辉,胡治权,康佳星,徐天吉,李录明. 基于时频域极化属性的多分量地震数据面波压制方法[J]. 应用地球物理, 2018, 15(1): 99-110.
[9] 郑确,刘财,田有,朱洪翔. 辽宁省中上地壳双差层析成像及海城地震(Ms 7.3)发震构造解释[J]. 应用地球物理, 2018, 15(1): 125-136.
[10] 刘金钊,王同庆,陈兆辉,张品,朱传东,张双喜. 基于插值切割位场分离技术分析2016-1-21青海门源Ms6.4级地震前重力变化特征[J]. 应用地球物理, 2018, 15(1): 137-146.
[11] 孙小东,李振春,贾延睿. 基于变网格的不同观测系统下的逆时偏移[J]. 应用地球物理, 2017, 14(4): 517-522.
[12] 姬战怀,严胜刚. 改进的Gabor小波变换的特性在地震信号处理和解释中的应用[J]. 应用地球物理, 2017, 14(4): 529-542.
[13] 尹陈. 基于微震特性的断层检测技术[J]. 应用地球物理, 2017, 14(3): 363-371.
[14] 杨志强,何涛,邹长春. 筇竹寺和五峰—龙马溪组页岩地震岩石物理等效模型及等效孔隙纵横比的分析[J]. 应用地球物理, 2017, 14(3): 325-336.
[15] 胡松,李军,郭洪波,王昌学. 水平井随钻电磁波测井与双侧向测井响应差异及其解释应用[J]. 应用地球物理, 2017, 14(3): 351-362.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司