APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (4): 447-458    DOI: 10.1007/s11770-014-0452-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
稀疏时频分解方法的研究与运用
王雄文,王华忠
同济大学海洋与地球科学学院,上海 200092
Application of sparse time-frequency decomposition to seismic data
Wang Xiong-Wen1 and Wang Hua-Zhong1
1. School of Ocean and Earth Sciences, Tongji University, Shanghai 20092.
 全文: PDF (1099 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 Gabor变换和S变换是常用的时频分析工具。根据测不准原理,它们的时频分解结果无法在时间域和频率域同时具有很高的分辨率。为了提高非平稳信号时频分解结果的分辨率,本文提出瞬时频率分布函数(IFDF)并利用它表达非平稳信号。当非平稳信号时频成分的分布满足测不准原理对信号可分辨的要求时,瞬时频率分布函数的支集和短时Fourier变换的小波脊支集是同一个集合。利用IFDF的该特征,本文提出一种迭代算法(Sparse-STFT)实现了信号的稀疏时频分解。该算法在每次迭代过程中利用残留信号的短时Fourier变换结果的脊支集更新信号的时频成分,每次迭代得到的时频成分的叠加结果即为最终的稀疏时频分解结果。文中的数值实验证明了Sparse-STFT可以有效地提高非平稳信号时频分解结果的分辨率。最后,本文将该方法应用于地震数据面波的压制中,取得了理想的处理结果。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王雄文
王华忠
关键词时频分析   稀疏时频分解   非平稳信号建模   分辨率     
Abstract: The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time and frequency domains. To improve the resolution of the time-frequency decomposition results, we use the instantaneous frequency distribution function (IFDF) to express the seismic signal. When the instantaneous frequencies of the nonstationary signal satisfy the requirements of the uncertainty principle, the support of IFDF is just the support of the amplitude ridges in the signal obtained using the short-time Fourier transform. Based on this feature, we propose a new iteration algorithm to achieve the sparse time-frequency decomposition of the signal. The iteration algorithm uses the support of the amplitude ridges of the residual signal obtained with the short-time Fourier transform to update the time-frequency components of the signal. The summation of the updated time-frequency components in each iteration is the result of the sparse time-frequency decomposition. Numerical examples show that the proposed method improves the resolution of the time-frequency decomposition results and the accuracy of the analysis of the nonstationary signal. We also use the proposed method to attenuate the ground roll of field seismic data with good results.
Key wordsTime-frequency analysis   sparse time-frequency decomposition   nonstationary signal   resolution   
收稿日期: 2014-08-07;
基金资助:

本研究由国家“973”重点基础研究发展计划项目(编号:2011 CB201002)、国家自然科学基金(编号:41374117)和国家重大专项(编号:2011ZX05005-005-008HZ、2011ZX05006-002和2011ZX05023)联合资助。

引用本文:   
王雄文,王华忠. 稀疏时频分解方法的研究与运用[J]. 应用地球物理, 2014, 11(4): 447-458.
WANG Xiong-Wen,WANG Hua-Zhong. Application of sparse time-frequency decomposition to seismic data[J]. APPLIED GEOPHYSICS, 2014, 11(4): 447-458.
 
[1] Askari, R., and Siahkoohi, H. R., 2008, Ground roll attenuation using the S and x-f-k transforms: Geophysical Prospecting, 56, 105-114.
[2] Bonar, D. C., and Sacchi, M. D., 2010, Complex spectral decomposition via inversion strategies: 80th SEG Annual International Meeting, Expanded Abstracts, 1408-1412.
[3] Castagna, J., Sun, S., and Siegfried, R., 2003, Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons: The Leading Edge, 22, 120-127C.
[4] Castagna, J., and Sun, S., 2006, Comparison of spectral decomposition methods: First Break, 24, 75-79.
[5] Chuang, H., and Lawton, D. C., 1991, Some properties of thin beds: 61st Annual International Meeting, SEG, Expanded Abstracts, 224-227.
[6] Ebrom, D., 2004, The low-frequency gas shadow on seismic sections: The Leading Edge, 23, 772,
[7] Gao, J. H., 2003, Generalized S transform and seismic response analysis of thin interbeds: Chinese J. of Geophysics, 46(4), 526-532.
[8] Gabor, D., 1946, Theory of communication: Journal of the Institute of Electrical Engineers, 93, 429-457.
[9] Gholami, 2012, Sparse time-frequency decomposition and some applications: IEEE Transactions on Geoscience and Remote Sensing, 51, 3598-3604,
[10] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C., and Liu, H. H., 1998. The empirical mode decomposition and the Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis: Proceedings of the Royal Society of London A, 454, 903-995.
[11] Huang, N. E., and Shen, S. S. P., 2005,Hilbert-Huang transform and its applications: World Scientific,.ondon.
[12] Li, X. Y., Chen, S. M., Wang, J. M., Pei, J. Y., and Wang, Y. B., 2012, Forward modeling studies on the time-frequency characteristics of thin layers: Chinese J. of Geophysics, 55(10), 3410-3419.
[13] Liu, G., Fomel, S., and Chen, X., 2009, Time-frequency characterization of seismic data using local attributes: 79th SEG Annual International Meeting, Expanded Abstracts, 1825-1829.
[14] Liu, J., and Marfurt, K. J., 2006, Thin bed thickness prediction using peak instantaneous frequency: 76th SEG Annual International Meeting, Expanded Abstracts, 968-972.
[15] Liu, Y., and Fomel, S., 2010, Local time-frequency transform and its application to ground-roll noise attenuation: 80th SEG Annual International Meeting, Expanded Abstracts, 3711-3716.
[16] Mallat, S., 2009, A wavelet tour of signal processing-The sparse way (Third Edition).
[17] Marfurt, K. J., and Kirlin, R. L., 2001, Narrow-band spectral analysis and thin-bed tuning: Geophysics, 66, 1274-1283
[18] Partyka, G., Gridley, A. J., and Lopez, J., 1999, Interpretational applications of spectral decomposition in reservoir characterization: The Leading Edge, 18, 353-360,
[19] Ren, H., Goloshubin, G., and Hilterman, F., 2007, Spectra cross plot: 77th Annual International Meeting, SEG, Expanded Abstracts, 199-203.
[20] Rioul, O., and Vetterli, M., 1991, Wavelets and signal processing: IEEE Signal Processing Magazine, 8(4), 14-38,
[21] Sinha, S., Routh, P. S., Anno, P. D., and Castagna, J. P., 2005, Spectral decomposition of seismic data with continuous-wavelet transform: Geophysics, 70(6), 19-25,
[22] Steeghs, P., and Drijkoningen, G., 2001, Seismic sequence analysis and attribute extraction using quadratic time-frequency representations: Geophysics, 66, 1947-1959,
[23] Stockwell, R.G., Mansinha, L., and Lowe, R.P., 1996, Localization of the complex spectrum: the S transform: IEEE Transactions on Signal Processing, 44(4), 998-1001.
[24] Wang, Y., 2007, Seismic time-frequency spectral decomposition by matching pursuit: Geophysics, 72(1), V13-V20
[25] Wigner, E., 1932, On the quantum correction for thermodynamic equilibrium: Physical Review, 40(5), 749.
[1] 王德营,孔雪,董烈乾,陈立华,王永军,王晓晨. 一种非白噪反射系数序列的预测反褶积方法*[J]. 应用地球物理, 2019, 16(1): 109-123.
[2] 武绍江,王一博,马玥,常旭. 基于L0范数的超高分辨率最小二乘叠前Kirchhoff深度偏移[J]. 应用地球物理, 2018, 15(1): 69-77.
[3] 姬战怀,严胜刚. 改进的Gabor小波变换的特性在地震信号处理和解释中的应用[J]. 应用地球物理, 2017, 14(4): 529-542.
[4] 王德营,黄建平,孔雪,李振春,王姣. 基于时频二次谱的提高地震资料分辨率方法[J]. 应用地球物理, 2017, 14(2): 236-246.
[5] 张华,贺振华,李亚林,李瑞,何光明,李忠. 频域谱反演提高转换波薄层分辨率方法研究与应用[J]. 应用地球物理, 2017, 14(2): 247-257.
[6] 田雨,徐洪,张兴阳,王红军,郭同翠,张良杰,龚幸林. 基于图论多分辨率聚类分析的测井岩相识别研究——以阿姆河盆地台内滩气田为例[J]. 应用地球物理, 2016, 13(4): 598-607.
[7] 陈波,贾晓峰,谢小碧. 基于染色算法的宽频带地震照明及分辨率分析[J]. 应用地球物理, 2016, 13(3): 480-490.
[8] 杜正聪,胥德平,张金明. 分数阶S变换,第二部分:在储层预测及流体识别中的应用[J]. 应用地球物理, 2016, 13(2): 343-352.
[9] 车小花,乔文孝,鞠晓东,王瑞甲. 基于相控圆弧阵的方位声波固井质量评价:数值模拟与现场测试[J]. 应用地球物理, 2016, 13(1): 194-202.
[10] 宋建国, 宫云良, 李珊. 斜缆数据频率域高分辨率Radon变换与虚反射消除方法[J]. 应用地球物理, 2015, 12(4): 564-572.
[11] 周怀来, 王峻, 王明春, 沈铭成, 张昕锟, 梁平. 基于广义S变换的地震资料振幅谱补偿和相位谱校正方法研究[J]. 应用地球物理, 2014, 11(4): 468-478.
[12] 李志娜, 李振春, 王鹏, 徐强. λ-f域高分辨率Radon变换多次波压制方法研究[J]. 应用地球物理, 2013, 10(4): 433-441.
[13] 李国发, 秦德海, 彭更新, 岳英, 翟桐立. 稀疏约束反褶积方法实验分析与应用研究[J]. 应用地球物理, 2013, 10(2): 191-200.
[14] 沈洪垒, 田钢, 石战结. 基于高灵敏度检波器数据的分频匹配滤波方法及其应用[J]. 应用地球物理, 2013, 10(1): 15-24.
[15] 李国发, 彭更新, 岳英, 王万里, 崔永福. 基于信号纯度谱的有色反褶积[J]. 应用地球物理, 2012, 9(3): 333-340.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司