APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (3): 311-320    DOI: 10.1007/s11770-014-0445-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于地质统计先验信息的储层物性参数同步反演
印兴耀,孙瑞莹,王保丽,张广智
中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580
Simultaneous inversion of petrophysical parameters based on geostatistical a priori information
Yin Xing-Yao1, Sun Rui-Ying1, Wang Bao-Li1, and Zhang Guang-Zhi1
1. School of Geosciences, China University of Petroleum (Huadong), Qingdao 266580, China.
 全文: PDF (781 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文提出的储层物性参数同步反演是一种高分辨率的非线性反演方法,该方法综合利用岩石物理和地质统计先验信息,在贝叶斯理论框架下,首先通过变差结构分析得到合理的变差函数,进而利用快速傅里叶滑动平均模拟算法(Fast Fourier Transform-Moving Average, FFT-MA)和逐渐变形算法(Gradual Deformation Method, GDM)得到基于地质统计学的储层物性参数先验信息,然后根据统计岩石物理模型建立弹性参数与储层物性参数之间的关系,构建似然函数,最终利用Metropolis算法实现后验概率密度的抽样,得到物性参数反演结果。并将此方法处理了中国陆上探区的一块实际资料,本方法的反演结果具有较高的分辨率,与测井数据吻合度较高;由于可以直接反演储层物性参数,避免了误差的累积,大大减少了不确定性的传递,且计算效率较高。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
印兴耀
孙瑞莹
王保丽
张广智
关键词地质统计先验信息   统计岩石物理   贝叶斯理论   物性参数同步反演     
Abstract: The high-resolution nonlinear simultaneous inversion of petrophysical parameters is based on Bayesian statistics and combines petrophysics with geostatistical a priori information. We used the fast Fourier transform–moving average (FFT–MA) and gradual deformation method (GDM) to obtain a reasonable variogram by using structural analysis and geostatistical a priori information of petrophysical parameters. Subsequently, we constructed the likelihood function according to the statistical petrophysical model. Finally, we used the Metropolis algorithm to sample the posteriori probability density and complete the inversion of the petrophysical parameters. We used the proposed method to process data from an oil field in China and found good match between inversion and real data with high-resolution. In addition, the direct inversion of petrophysical parameters avoids the error accumulation and decreases the uncertainty, and increases the computational efficiency.
Key wordsGeostatistical a priori information   petrophysics   Bayesian statistics   simultaneous inversion   
收稿日期: 2013-02-16;
基金资助:

本研究由国家973项目(编号:2013CB228604)、国家科技重大专项(编号:2011ZX05009)、山东省自然科学基金(编号:ZR2011DQ013)和国家自然科学基金(编号:41204085)联合支持与资助。

引用本文:   
印兴耀,孙瑞莹,王保丽等. 基于地质统计先验信息的储层物性参数同步反演[J]. 应用地球物理, 2014, 11(3): 311-320.
YIN Xing-Yao,SUN Rui-Ying,WANG Bao-Li et al. Simultaneous inversion of petrophysical parameters based on geostatistical a priori information[J]. APPLIED GEOPHYSICS, 2014, 11(3): 311-320.
 
[1] Bortoli, L. J., Alabert, F., Hass, A., and Journel, A. G., 1992, Constraining stochastic images to seismic data: Proceedings of the International Geostatistics Congress, 1-50.
[2] Ding L. X., 2013, Research on high-resolution stochastic inversion: Master’s thesis (in Chinese), China University of Petroleum (Huadong), Qingdao.
[3] Eidsvik, J., Avseth, P., Omre, H., Mukerji, T., and Mavko, G., 2004, Stochastic reservoir characterization using prestack seismic data: Geophysics, 69(4), 978-993.
[4] Francis A., 2005, Limitations of deterministic and advantages of stochastic seismic inversion: CSEG Recorder, 30, 5-11.
[5] Francis, A., 2006, Understanding stochastic inversion: Part 1: First Break, 24(11), 69-77.
[6] Francis, A., 2006, Understanding stochastic inversion: Part 2: First Break, 24(12), 79-84.
[7] Gassmann, F., 1951, Elastic waves through a packing of spheres: Geophysics, 16(4), 673-685.
[8] Gelman, A., Roberts, G., and Gilks, W., 1996, Efficient metropolis jumping rules: Bayesian statistics, 5, 599-608.
[9] Grana, D., and Rossa, D. E., 2010, Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion: Geophysics, 75(3), O21-O37.
[10] Grana, D., and Dvorkin, J., 2011, The link between seismic inversion, rock physics, and geostatistical simulations in seismic reservoir characterization studies: The Leading Edge, 30(1), 54-61.
[11] Hill, R., 1965, A self-consistent mechanics of composite materials: Journal of the Mechanics and Physics of Solids, 13(4), 213-222.
[12] Hu, L. Y., 2000, Gradual deformation and iterative calibration of Gaussian-related stochastic models: Mathematical Geology, 32(1), 87-108.
[13] Journel, A. G., and Huijbregts, C. J., 1978, Mining geostatistics: Academic Press, London.
[14] Keys, R. G., and Xu, S., 2002, An approximation for the Xu-White velocity model: Geophysics, 67(5), 1406-1414.
[15] Kirkpatrick, S., and Vecchi, M. P., 1983, Optimization by simulated annealing: Science, 220(4598), 671-680.
[16] Kjønsberg, H., Hauge, R., Kolbjørnsen, O., and Buland, A., 2010, Bayesian Monte Carlo method for seismic predrill prospect assessment: Geophysics, 75(2), O9-O19.
[17] Le Ravalec, M., Noetinger, B., and Hu, L. Y., 2000, The FFT moving average (FFT-MA) generator: An efficient numerical method for generating and conditioning Gaussian simulations: Mathematical Geology, 32(6), 701-723.
[18] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E., 1953, Equation of state calculations by fast computing machines: The Journal of Chemical Physics, 21(6), 1087-1092.
[19] Mosegaard, K. and Tarantola, A., 1995, Monte Carlo sampling of solutions to inverse problems. Journal of Geophysical Research: Solid Earth (1978-2012), 100(B7), 12431-12447.
[20] Mukerji, T., Avseth, P., Mavko, G., Takahashi, I., and González, E. F., 2001, Statistical rock physics: Combining rock physics, information theory, and geostatistics to reduce uncertainty in seismic reservoir characterization: The Leading Edge, 20(3), 313-319.
[21] Mukerji, T., Jørstad, A., Avseth, P., Mavko, G., and Granli, J. R., 2001, Mapping lithofacies and pore-fluid probabilities in a North Sea reservoir: Seismic inversions and statistical rock physics: Geophysics, 66(4), 988-1001.
[22] Oliver, D. S., 1995, Moving averages for Gaussian simulation in two and three dimensions: Mathematical Geology, 27(8), 939-960.
[23] Spikes, K., Mukerji, T., Dvorkin, J., and Mavko, G., 2007, Probabilistic seismic inversion based on rock-physics models: Geophysics, 72(5), R87-R97.
[24] Wood, A. W., 1995, A Texbook of Sound: The MacMillan Co, New York.
[25] Xia, L. N., 2013, The study of petrophysical properties seismic inversion based on Bayesian theory: Master’s thesis (in Chinese), China University of Petroleum (Huadong), Qingdao.
[1] 宗兆云,印兴耀,李坤. 基于贝叶斯理论的时频域联合AVO反演方法研究[J]. 应用地球物理, 2016, 13(4): 631-640.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司