APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (3): 321-330    DOI: 10.1007/s11770-014-0447-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
2D地震数据规则化中Bernoulli随机欠采样方案
蔡瑞,赵群,佘德平,杨丽,曹辉,杨勤勇
中国石化石油物探技术研究院,中国石化地球物理重点实验室,南京  211103
Bernoulli-based random undersampling schemes for 2D seismic data regularization
Cai Rui1, Zhao Qun1, She De-Ping1, Yang Li1, Cao Hui1, and Yang Qin-Yong1
1.Sinopec Geophysical Research Institute and Sinopec Key Laboratory of Geophysics, Nanjing 211103, China.
 全文: PDF (969 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地震数据规则化是地震信号处理中一个重要步骤,但要求地震数据采样必须遵循Shannon-Nyquist采样定理,压缩感知理论提供一种全新的地震道采样方法,克服了这种限制。基于压缩感知技术的地震数据规则化的质量,除了地震信号在某一个变换域的稀疏表达和l1范数重构算法外,主要取决于地震数据随机欠采样方式。在这方面已有学者研究了2D地震数据的基于离散均匀分布随机欠采样方式,其中的地震道以均等的概率被采集到。但是,在理论与实际中,地震道需要以不同的概率被采集到,更好地满足压缩感知的随机性假设条件。本文提出满足Bernoulli过程分布规律的Bernoulli随机欠采样方案及其抖动形式,以不同的概率确定随机采集到的地震道。在实验中,我们采用两种变换(Fourier和曲波变换)和l1范数谱投影梯度重构算法(SPGL1),以及十个不同随机种子点。依据原始与重构地震数据之间的信噪比, 2D地震数值模拟和物理模拟数据的详细实验结果说明,我们提出的新方案总体上好于已有的离散均匀分布欠采样方案。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡瑞
赵群
佘德平
杨丽
曹辉
杨勤勇
关键词地震数据规则化   压缩感知   Bernoulli分布   稀疏变换   欠采样方式   l1范数重构算法     
Abstract: Seismic data regularization is an important preprocessing step in seismic signal processing. Traditional seismic acquisition methods follow the Shannon–Nyquist sampling theorem, whereas compressive sensing (CS) provides a fundamentally new paradigm to overcome limitations in data acquisition. Besides the sparse representation of seismic signal in some transform domain and the 1-norm reconstruction algorithm, the seismic data regularization quality of CS-based techniques strongly depends on random undersampling schemes. For 2D seismic data, discrete uniform-based methods have been investigated, where some seismic traces are randomly sampled with an equal probability. However, in theory and practice, some seismic traces with different probability are required to be sampled for satisfying the assumptions in CS. Therefore, designing new undersampling schemes is imperative. We propose a Bernoulli-based random undersampling scheme and its jittered version to determine the regular traces that are randomly sampled with different probability, while both schemes comply with the Bernoulli process distribution. We performed experiments using the Fourier and curvelet transforms and the spectral projected gradient reconstruction algorithm for 1-norm (SPGL1), and ten different random seeds. According to the signal-to-noise ratio (SNR) between the original and reconstructed seismic data, the detailed experimental results from 2D numerical and physical simulation data show that the proposed novel schemes perform overall better than the discrete uniform schemes.
Key wordsSeismic data regularization   compressive sensing   Bernoulli distribution   sparse transform   undersampling   1-norm reconstruction algorithm   
收稿日期: 2013-01-07;
基金资助:

本研究由中国石化科技部前瞻性项目“2011年度物探新技术探索研究”(P11096)资助。

引用本文:   
蔡瑞,赵群,佘德平等. 2D地震数据规则化中Bernoulli随机欠采样方案[J]. 应用地球物理, 2014, 11(3): 321-330.
CAI Rui,ZHAO Qun,SHE De-Ping et al. Bernoulli-based random undersampling schemes for 2D seismic data regularization[J]. APPLIED GEOPHYSICS, 2014, 11(3): 321-330.
 
[1] Baraniuk, R. G., 2007, Compressive sensing: IEEE Signal Processing Magazine, 24(4), 118-121.
[2] Baraniuk, R. G., 2011, More is less: signal processing and the data deluge: Science, 331(6018), 717-719.
[3] Berg, E. V. D., and Friedlander, M. P., 2008, Probing the Pareto frontier for basis pursuit solutions: SIAM Journal on Scientific Computing, 31(2), 890-912.
[4] Berg, E. V. D., Friedlander, M. P., Hennenfent, G., Herrmann, F. J., Saab, R., and Yilmaz, O., 2009, Algorithm 890: Sparco: a testing framework for sparse reconstruction: ACM Transactions on Mathematical Software, 35(4), 1-16.
[5] Billingsley, P., 1986, Probability and measure (2nd Edition): Wiley press.
[6] Candes, E. J., 2006, Compressive sampling: International Congress of Mathematics, 3, 1433-1452.
[7] Davenport, M., Duarte, M., Eldar, Y. C., and Kutyniok, G., 2012, Introduction to compressed sensing, In Eldar, Y. C., and Kutyniol, G., Eds., Compressed Sensing: Theory and Applications: Cambridge University Press.
[8] Donoho, D., 2006, Compressed sensing: IEEE Transactions on Information Theory, 52(4), 1289-1306.
[9] Fornasier, M., 2010, Theoretical foundations and numerical methods for sparse recovery: de Gruyter Press.
[10] Hennenfent, G., and Herrmann, F. J., 2008, Simply denoise: wavefield reconstruction via jittered undersampling: Geophysics, 73(3), V19-V28.
[11] Herrmann, F. J., Wang, D., Hennenfent, G., and Moghaddam, P. P., 2008, Curvelet-based seismic data processing: a multiscale and nonlinear approach: Geophysics, 73(1), A1-A5.
[12] Herrmann, F. J., and Hennenfent, G., 2008, Nonparametric seismic data recovery with curvelet frames: Geophysical Journal International, 173(1), 233-248.
[13] Herrmann, F. J., 2010, Randomized sampling and sparsity: getting more information from fewer samples: Geophysics, 75(6), WB172-WB187.
[14] Li, C., Mosher C. C., Shan, S., and Brewer, J. D., 2013, Marine towed streamer data reconstruction based on compressive sensing: 83th Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 3597-3602.
[15] Mansour, H., Herrmann, F.J., and Yilmaz, O, 2013, Improved wavefield reconstruction from randomized sampling via weighted one-norm minimization: Geophysics, 78(5), V193-V206
[16] Patel, V. M., and Chellappa, R., 2013, Sparse representations and compressive sensing for imaging and vision, Springer press.
[17] Shao, J., 2003, Mathematical statistics (2nd Edition): Springer press.
[18] Wang, S., Li, J., Chiu, S. K., and Anno, P. D., 2010, Seismic data compression and regularization via wave packets: 80th Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 3650-3655.
[19] Wang, Y., Cao, J., and Yang, C., 2011, Recovery of seismic wavefield-based on compressive sensing by an l1-norm constrained trust region method and the piecewise random subsampling: Geophysical Journal International, 187(1), 199-213.
[20] Wu, R.-S., Geng, Y. and Ye, L., 2013, Preliminary study on dreamlet-based compressive sensing data recovery: 83th Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 3585-3590.
[1] 李广,肖晓,汤井田,李晋,朱会杰,周聪,严发宝. 基于压缩感知重构算法和形态滤波的AMT近源干扰压制[J]. 应用地球物理, 2017, 14(4): 581-590.
[2] 杨亚鹏, 吴美平, 唐刚. 基于L1范数凸二次规划方法的航空重力测量数据稀疏重构[J]. 应用地球物理, 2015, 12(2): 147-156.
[3] 张军华, 张彬彬, 张在金, 梁鸿贤, 葛大明. 地震低频信息缺失特征分析及拓频方法研究[J]. 应用地球物理, 2015, 12(2): 212-220.
[4] 勾福岩, 刘财, 刘洋, 冯晅, 崔芳姿. 基于Bregman迭代的复杂地震波场稀疏域插值方法[J]. 应用地球物理, 2014, 11(3): 277-288.
[5] 张华, 陈小宏, 吴信民. 基于压缩感知理论与傅立叶变换的地震数据重建[J]. 应用地球物理, 2013, 10(2): 170-180.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司