APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (3): 301-310    DOI: 10.1007/s11770-014-0444-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于Curvelet变换的探地雷达资料噪声衰减方法
包乾宗1,李庆春1,陈文超2
1. 长安大学地质工程与测绘学院,西安 710054
2. 西安交通大学电子与信息工程学院波动与信息研究所,西安 710049
GPR data noise attenuation on the curvelet transform
Bao Qian-Zong1, Li Qing-Chun1, and Chen Wen-Chao2
1. College of Geology Engineering and Geomatics, Chang’an University, Xi’an, 710054, China.
2. School of Electronics & Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China.
 全文: PDF (717 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 噪声衰减是探地雷达信号处理中的关键问题之一。当探测目标埋藏深度比较浅时,其反射信号与直耦信号和地面回波信号相互重叠,直接影响目标反射波到达时刻的检测及目标的正确定位。针对这个问题,本文提出了一种基于Curvelet变换的噪声衰减方法。首先,原始信号变换到Curvelet域,根据背景噪声与有效信号在curvelet域然后对背景噪声曲波系数根据分布特征不同于有效信号的提取。在Curvelet域,粗尺度曲波原子是各向同性的。因此,一个二维方向滤波器估计在粗尺度域,高能量的背景噪声,然后,抑制背景噪声、突出有效信号。通过对理论数值模拟数据和实测数据的处理,以及与平均消去法和二维连续小波该方法处理结果的对比,验证了该方法的可行性和有效性。处理结果显示,该方法不仅可以去除背景噪声、同时可以衰减倾斜相关的相干干扰和数据中的随机噪声。与二维连续小波变换方法相比有更高的计算效率。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
包乾宗
李庆春
陈文超
关键词背景噪声   噪声衰减   强背景噪声   Curvelet变换   阈值     
Abstract: Signal extraction is critical in GRP data processing and noise attenuation. When the target depth is shallow, its reflection echo signal will overlap with the background noise, affecting the detection of arrival time and localization of the target. Thus, we propose a noise attenuation method based on the curvelet transform. First, the original signal is transformed into the curvelet domain, and then the curvelet coefficients of the background noise are extracted according to the distribution features that differ from the effective signal. In the curvelet domain, the coarse-scale curvelet atom is isotropic. Hence, a two-dimensional directional filter is designed to estimate the high-energy background noise in the coarse-scale domain, and then, attenuate the background noise and highlight the effective signal. In this process, we also use a subscale threshold value of the curvelet domain to filter out random noise. Finally, we compare the proposed method with the average elimination and 2D continuous wavelet transform methods. The results show that the proposed method not only removes the background noise but also eliminates the coherent interference and random noise. The numerical simulation and the real data application suggest and verify the feasibility and effectiveness of the proposed method.
Key wordsSignal extraction   background noise   curvelet transform   threshold value   noise attenuation   
收稿日期: 2013-03-13;
基金资助:

本研究由国家自然科学基金(编号:41074089)和博士后基金特别资助项目(编号:201104654))资助。

引用本文:   
包乾宗,李庆春,陈文超. 基于Curvelet变换的探地雷达资料噪声衰减方法[J]. 应用地球物理, 2014, 11(3): 301-310.
BAO Qian-Zong,LI Qing-Chun,CHEN Wen-Chao. GPR data noise attenuation on the curvelet transform[J]. APPLIED GEOPHYSICS, 2014, 11(3): 301-310.
 
[1] Candès, E.J. and Donoho, D. L., 2004, New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities: Communications on Pure and Applied Mathematics, 57 (2), 219-266.
[2] Candès, E.J. and Donoho, D.L., 2005, Continuous curvelet transform: I. resolution of the wavefront set: Applied and Computational Harmonic Analysis, 19 (2), 162-197.
[3] Candès, E.J. and Donoho, D.L., 2005, Continuous curvelet transform: II. discretization and frames: Applied and Computational Harmonic Analysis, 19, 198-222.
[4] Candès, E.J., Demanet, L., Donoho, D.L., and Ying, L.X., 2006, Fast discrete curvelet transforms: SIAM Multiscale Model Simul., 5 (3), 861-899.
[5] Carevic, D., 1999, Clutter reduction and target detection in ground-penetrating radar data using wavelets: Proceeding of the SPIE Conference on Detection and Remediation Technologies for Mines and Mine-like Targets IV, Florida, US, 973-978.
[6] Chen, W. C., Shi, Z.S., Wang, W. B., and Gao, J. H., 2000, Suppressing the direct wave noise in GPR data using the 2D continue directional wavelets: China Journal of Radio Science (in Chinese), 15 (3), 352-357.
[7] Chen, W. C., Wang, W., Gao, J. H., Xu, J., and Wang, W. B, 2012, GPR clutter noise separation by statistical independency promotion: Proceeding of the 14th International Conference on Ground Penetrating Radar (GPR), Shanghai, China, 367-370.
[8] Davis, J. D., 2004, Ground penetrating radar (2nd edition): the Institution of Electrical Engineers.
[9] Hennenfent, G. and Herrmann, F. J., 2006, Seismic denoising with nonuniformly sampled curvelets: Computing in Science and Engineering, 8 (3), 16-25.
[10] Herrmann, F. J., Böniger, U., and Verschuur, D.J., 2007, Non-linear primary-multiple separation with directional curvelet frames: Geophysical Journal International, 170 (2), 781-799.
[11] Herrmann, F. J. and Hennenfent, G., 2008, Non-parametric seismic data recovery with curvelet frames: Geophysical Journal International, 173 (1), 233-248.
[12] Karlsen, B., Larsen, J., Sørensen, H. B. D., and Jakobsen, K.B., 2001, Comparison of PCA and ICA-based clutter reduction in GPR systems for anti-personal landmine detection: Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing, Singapore, 146-149.
[13] Karlsen, B., Sørensen, H. B. D., Larsen, J., and Jakobsen, K.B., 2002, Independent component analysis for clutter reduction in Ground Penetrating Radar data: Proceeding of the SPIE on Detection and Remediation Technologies for Mines and Mine-like Targets VII, California, US, 378-389.
[14] Khan, U. S. and Al-Nuaimy, W., 2010, Background removal from GPR data using Eigenvalues: Proceeding of the 13th Int. Conf. Ground Penetrating Radar (GPR), Lecce, Italy, 1-5.
[15] Kovalenko, V., Yarovoy, A.G., and Ligthart, L.P., 2007, A novel clutter suppression algorithm for landmine detection with GPR: IEEE Transactions on Geoscience and Remote Sensing, 45 (11), 3740-3751.
[16] Li, A., Jiang, Y. S., Zhang, A. X. and Wang, W. B., 2004, Suppressing the direct wave interference in GPR data using adaptive interference canceling: China Journal of Radio Science (in Chinese), 19 (2), 223-227.
[17] Ma, J. W. and Plonka, G., 2007, Combined Curvelet Shrinkage and Nonlinear Anisotropic Diffusion: IEEE Transactions on Image Processing, 16 (9), 2198-2206.
[18] Neelamani, R., Baumstein, A. I., Gillard, D.G., Hadidi, M., and Soroka, W., 2008, Coherent and random noise attenuation using the curvelet transform: The Leading Edge, 27(2), 240-248.
[19] Potin, D., Duflos, E., and Vanheeghe, P., 2006, Landmines ground- penetrating radar signal enhancement by digital filtering: IEEE Transactions on Geoscience and Remote Sensing, 44(9), 2393-2406.
[20] Solimene, R., Cuccaro, A., Dell’Aversano, A., Catapano, I., and Soldovieri, F., 2014, Ground Clutter Removal in GPR Surveys: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(3), 792-798.
[21] Starck, J. L., Murtagh, F., Candes, E. J. and Donoho, D.L., 2003, Gray and color image contrast enhancement by the curvelet transform: IEEE transactions on Image Processing, 12(6), 706-716.
[22] Su, Y., Huang, C. L., and Lei, T. W., 2006, Ground Penetrating Radar Theory and Applications: China Science Press.
[23] Van der, M. A., and Gutpa, I. J., 2000, A novel signal processing technique for clutter reduction in GPR measurements of small, shallow land mines: IEEE Transactions on Geoscience and Remote Sensing, 38(6), 2627-2637.
[24] Wang, Z. J., Zeng, Z. F., Xue, J., and Liu, S. X., 2005, The application of KL transform to remove horizontal coherent noise in GPR record: Journal of Jiling University (Earth Science Edition) (in Chinese), 35 (Sup), 124-127.
[25] Zeng, Z. F., Liu, S. X., Wang, Z. J., and Xue, J., 2006, Principles of Ground-Penetrating Radar Method and Applications: China Science Press.
[26] Zeng, Z. F., Wu, F. S., Huang, L., Liu, F. S., and Sun, J. G., 2009, The adaptive chirplet transform and its application in GPR target detection: Applied Geophysics, 6(2), 92-200.
[1] 赵玉敏,李国发,王伟,周振晓,唐博文,张文波. 基于数据驱动和反演策略的时空域随机噪声衰减方法[J]. 应用地球物理, 2017, 14(4): 543-550.
[2] 张代磊,黄大年,于平,袁园. 基于平移不变量小波的全张量重力梯度数据滤波[J]. 应用地球物理, 2017, 14(4): 606-619.
[3] 甘叔玮, 王守东, 陈阳康, 陈江龙, 钟巍, 张成林. 基于相似度权重算子和f − x域经验模态分解的随机噪声衰减方法[J]. 应用地球物理, 2016, 13(1): 127-134.
[4] 葛子建, 李景叶, 潘树林, 陈小宏. 一种快速收敛的抗噪POCS地震数据重构方法[J]. 应用地球物理, 2015, 12(2): 169-178.
[5] 马彦彦, 李国发, 王峣钧, 周辉, 张保江. F-X域复数经验模态分解去噪方法[J]. 应用地球物理, 2015, 12(1): 47-54.
[6] 刘财, 陈常乐, 王典, 刘洋, 王世煜, 张亮. 基于二维希尔伯特变换的地震倾角求取方法及其在随机噪声衰减中的应用[J]. 应用地球物理, 2015, 12(1): 55-63.
[7] 蔡涵鹏, 贺振华, 李亚林, 何光明, 邹文, 张洞君, 刘璞. 边界和振幅特性保持的自适应噪声衰减方法[J]. 应用地球物理, 2014, 11(3): 289-300.
[8] 陈国新, 陈生昌, 王汉闯, 张博. 基于L0范数最小化的地球物理数据稀疏重构[J]. 应用地球物理, 2013, 10(2): 181-190.
[9] 刘国昌, 陈小宏, 李景叶, 杜婧, 宋家文. 基于非稳态多项式拟合的地震噪声衰减方法研究[J]. 应用地球物理, 2011, 8(1): 18-26.
[10] 王德利, 仝中飞, 唐晨, 朱恒. Curvelet阈值迭代法地震随机噪声压制[J]. 应用地球物理, 2010, 7(4): 315-324.
[11] 郑静静, 印兴耀, 张广智, 武国虎, 张作胜. 基于第二代Curvelet变换的面波压制[J]. 应用地球物理, 2010, 7(4): 325-335.
[12] 高建军, 陈小宏, 李景叶, 刘国昌, 马剑. 基于POCS方法指数阈值模型的不规则地震数据重建[J]. 应用地球物理, 2010, 7(3): 229-238.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司