APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (3): 277-288    DOI: 10.1007/s11770-014-0443-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于Bregman迭代的复杂地震波场稀疏域插值方法
勾福岩1,刘财1,刘洋1,冯晅1,崔芳姿2
1. 吉林大学地球探测科学与技术学院,长春 130026
2. 中国地质调查局水文地质环境地质调查中心,保定 071051
Complex seismic wavefield interpolation based on the Bregman iteration method in the sparse transform domain
Gou Fu-Yan1, Liu Cai1, Liu Yang1, Feng Xuan1, and Cui Fang-Zi2
1. College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China.
2. Center for Hydrogeology and Environmental Geology Survey, CGS, Baoding 071051, China.
 全文: PDF (1984 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在地震勘探中,野外施工条件等因素使观测系统很难记录到完整的地震波场,因此,资料处理中的地震数据插值是一个重要的问题。尤其在复杂构造条件下,缺失的叠前地震数据给后续高精度处理带来严重的影响。压缩感知理论源于解决图像采集问题,主要包含信号的稀疏表征以及数学组合优化问题的求解,它为地震数据插值问题的求解提供了有效的解决方案。在应用压缩感知求解复杂地震波场的插值问题中,如何最佳化表征复杂地震波场以及快速准确的迭代算法是该理论应用的关键问题。Seislet变换是一个特殊针对地震波场表征的稀疏多尺度变换,该方法能有效地压缩地震波同相轴。同时,Bregman迭代算法在以稀疏表征为核心的压缩感知理论中,是一种有效的求解算法,通过选取适当的阈值参数,能够开发地震波动力学预测理论、图像处理变换方法和压缩感知反演算法相结合的地震数据插值方法。本文将地震数据插值问题纳入约束最优化问题,选取能够有效压缩复杂地震波场的OC-seislet稀疏变换,应用Bregman迭代方法求解压缩感知理论框架下的混合范数反问题,提出了Bregman迭代方法中固定阈值选取的H曲线方法,实现地震波场的快速、准确重建。理论模型和实际数据的处理结果验证了基于H曲线准则的Bregman迭代稀疏域插值方法可以有效地恢复复杂波场的缺失信息。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
勾福岩
刘财
刘洋
冯晅
崔芳姿
关键词Bregman迭代   OC-seislet变换   地震数据插值   压缩感知   H曲线准则     
Abstract: In seismic prospecting, field conditions and other factors hamper the recording of the complete seismic wavefield; thus, data interpolation is critical in seismic data processing. Especially, in complex conditions, prestack missing data affect the subsequent high-precision data processing workflow. Compressive sensing is an effective strategy for seismic data interpolation by optimally representing the complex seismic wavefield and using fast and accurate iterative algorithms. The seislet transform is a sparse multiscale transform well suited for representing the seismic wavefield, as it can effectively compress seismic events. Furthermore, the Bregman iterative algorithm is an efficient algorithm for sparse representation in compressive sensing. Seismic data interpolation methods can be developed by combining seismic dynamic prediction, image transform, and compressive sensing. In this study, we link seismic data interpolation and constrained optimization. We selected the OC-seislet sparse transform to represent complex wavefields and used the Bregman iteration method to solve the hybrid norm inverse problem under the compressed sensing framework. In addition, we used an H-curve method to choose the threshold parameter in the Bregman iteration method. Thus, we achieved fast and accurate reconstruction of the seismic wavefield. Model and field data tests demonstrate that the Bregman iteration method based on the H-curve norm in the sparse transform domain can effectively reconstruct missing complex wavefield data.
Key wordsBregman iteration   OC-seislet transform   seismic data interpolation   compressive sensing   H-curve norm   
收稿日期: 2014-04-24;
基金资助:

本研究由国家自然科学基金项目(编号:41274119、41174080和41004041)和国家863重大项目(编号:2012AA09A20103)资助。

引用本文:   
勾福岩,刘财,刘洋等. 基于Bregman迭代的复杂地震波场稀疏域插值方法[J]. 应用地球物理, 2014, 11(3): 277-288.
GOU Fu-Yan,LIU Cai,LIU Yang et al. Complex seismic wavefield interpolation based on the Bregman iteration method in the sparse transform domain[J]. APPLIED GEOPHYSICS, 2014, 11(3): 277-288.
 
[1] Abma, R., and Kabir, N., 2006, 3D interpolation of irregular data with a POCS algorithm: Geophysics, 71(6), E91-E97.
[2] Biondi, B., and Vlad, I., 2002, Amplitude preserving prestack imaging of irregularly sampled 3-D data: In 72nd SEG Annual International Meeting, Expanded Abstract, 2170-2173.
[3] Bregman, L. M., 1967, The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming: USSR Computational Mathematics and Mathematical Physics, 7(3), 200-217.
[4] Candès, E. J., 2006, Compressive sampling: Proceedings of the International Congress of Mathematicians, 3, 1433-1452.
[5] Chambolle, A., De Vore, R. A., Lee, N. Y., and Lucier, B. J., 1998, Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage: IEEE Transactions on Image Processing, 7(3), 319-335.
[6] Chen, S. S., Donoho, D. L., and Saunders, M. A., 1998, Atomic decomposition by basis pursuit: SIAM Journal on Scientific Computing, 20(1), 33-61.
[7] Daubechies, I., Defrise, M., and De Mol, C., 2004, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint: Communications on Pure and Applied Mathematics, 57(11), 1413-1457.
[8] Donoho, D. L., 2006, Compressed sensing: IEEE Transactions on Information Theory, 52(4), 1289-1306.
[9] Fomel, S., 2001, Three-dimensional seismic data regularization: Doctoral dissertation, Stanford University.
[10] Fomel, S. 2003, Differential azimuth moveout: 73rd Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 2068-2071.
[11] Fomel, S., 2003, Theory of differential offset continuation: Geophysics, 68(2), 718-732.
[12] Fomel, S., 2003, Seismic reflection data interpolation with differential offset and shot continuation: Geophysics, 68(2), 733-744.
[13] Fomel, S., 2006, Towards the seislet transform: 76th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts. 2847-2851.
[14] Fomel, S., and Liu, Y., 2010, Seislet transform and seislet frame: Geophysics, 75(3), V25-V38.
[15] Gao, J. J., Chen, X. H., Li, J. Y., Liu, G. C., and Ma, J., 2010, Irregular seismic data reconstruction based on exponential threshold model of POCS method: Applied Geophysics, 7(3), 229-238.
[16] Geng, Y., Wu, R. S., and Gao, J. H., 2012, Dreamlet compression of seismic data: Chinese Journal of Geophysics, 55(8), 2705-2715.
[17] Guan, L. P., Tang, Y. X., and Wang, H. Z., 2009, Common-offset plane-wave prestack time migration and demigration: Chinese Journal of Geophysics, 52(5), 1301-1309.
[18] Gülünay, N., 2003, Seismic trace interpolation in the Fourier transform domain: Geophysics, 68(1), 355-369.
[19] Hansen, P. C., and O'Leary, D. P., 1993, The use of the L-curve in the regularization of discrete ill-posed problems: SIAM Journal on Scientific Computing, 14(6), 1487-1503.
[20] Liner, C. L., 1990, General theory and comparative anatomy of dip moveout: Geophysics, 55(5), 595-607.
[21] Liu, Y., and Fomel, S., 2010, OC-seislet: Seislet transform construction with differential offset continuation: Geophysics, 75(6), 235-245.
[22] Liu, X. W., Liu, H., and Liu, B., 2004, A study on reconstruction of dealiased uneven seismic data: Chinese Journal of Geophysics, 47(2), 333-341.
[23] Liu, Y., Fomel, S., and Liu, C., et al. 2009, High-order seislet transform and its application of random noise attenuation: Chinese Journal of Geophysics, 52(8),2142-2151.
[24] Lu, Y. H., Lu, W. K., and Zhai, Z. J., 2012, An edge-preserving seismic data interpolation method: Chinese Journal of Geophysics, 55(3), 991-997.
[25] Meng, X. H., Guo, L. H., Zhang, Z. F., Li, S. L., and Zhou, J. J., 2008, Reconstruction of Seismic Data with Least Squares Inversion Based on Nonuniform Fast Fourier Transform: Chinese Journal of Geophysics, 51(1), 168-175.
[26] Montefusco, L. B., and Papi, S., 2003, A parameter selection method for wavelet shrinkage denoising: BIT Numerical Mathematics, 43(3), 611-626.
[27] Natarajan, B. K., 1995, Sparse approximate solutions to linear systems: SIAM Journal on Computing, 24(2), 227-234.
[28] Osher, S., Burger, M., Goldfarb, D., Xu, J., and Yin, W., 2005, An iterative regularization method for total variation-based image restoration: Multiscale Modeling and Simulation, 4(2), 460-489.
[29] Rudin, L. I., Osher, S., and Fatemi, E., 1992, Nonlinear total variation based noise removal algorithms: Physica D, 60(1), 259-268.
[30] Sweldens, W., 1995, Lifting scheme: a new philosophy in biorthogonal wavelet constructions: Wavelet Applications in Signal and Image Processing III, Proceedings of SPIE 2569, 68-79.
[31] Sweldens, W., and Schröder, P., 1996, Building your own wavelets at home: Wavelets in Computer Graphics: ACM SIGGRAPH Course Notes, 15-87.
[32] Wang, W. H., Pei, J. Y., and Zhang, J. F., 2007, Prestack seismic data reconstruction using weighted parabolic Radon transform: Chinese Journal of Geophysics, 50(3), 851-859.
[33] Xin, K. F., Wang, H. Z., and Wang, C. L., 2002, Regularization of pre-stack seismic data: Oil Geophysical Prospecting (in Chinese), 37(4), 311-317.
[34] Xu, S., Zhang, Y., Pham, D., and Lambaré, G., 2005, Antileakage Fourier transform for seismic data regularization: Geophysics, 70(4), V87-V95.
[35] Yin, W., Osher, S., Goldfarb, D., and Darbon, J., 2008, Bregman iterative algorithms for L1-minimization with applications to compressed sensing: SIAM Journal on Imaging Sciences, 1(1), 143-168.
[36] Zhou, B., Mason, I. M., and Greenhalgh, S. A., 1996, An accurate formulation of log-stretch dip moveout in the frequency-wavenumber domain: Geophysics, 61(3), 815-820.
[37] Zwartjes, P., and Gisolf, A., 2007, Fourier reconstruction with sparse inversion: Geophysical Prospecting, 55(2), 199-221.
[1] 李广,肖晓,汤井田,李晋,朱会杰,周聪,严发宝. 基于压缩感知重构算法和形态滤波的AMT近源干扰压制[J]. 应用地球物理, 2017, 14(4): 581-590.
[2] 杨亚鹏, 吴美平, 唐刚. 基于L1范数凸二次规划方法的航空重力测量数据稀疏重构[J]. 应用地球物理, 2015, 12(2): 147-156.
[3] 张军华, 张彬彬, 张在金, 梁鸿贤, 葛大明. 地震低频信息缺失特征分析及拓频方法研究[J]. 应用地球物理, 2015, 12(2): 212-220.
[4] 蔡瑞, 赵群, 佘德平, 杨丽, 曹辉, 杨勤勇. 2D地震数据规则化中Bernoulli随机欠采样方案[J]. 应用地球物理, 2014, 11(3): 321-330.
[5] 张华, 陈小宏, 吴信民. 基于压缩感知理论与傅立叶变换的地震数据重建[J]. 应用地球物理, 2013, 10(2): 170-180.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司