APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (3): 289-300    DOI: 10.1007/s11770-014-0446-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
边界和振幅特性保持的自适应噪声衰减方法
蔡涵鹏1,2,3,贺振华3,李亚林1,2,何光明1,2,邹文1,2,张洞君1,2,刘璞1,2
1. 中国石油川庆钻探工程有限公司地球物理勘探公司,四川成都 610213
2. 中国石油天然气集团公司山地地震技术试验基地,四川成都 610213
3. 成都理工大学“地球探测与信息技术”教育部重点实验室,四川成都 610059
An adaptive noise attenuation method for edge and amplitude preservation
Cai Han-Peng1,2,3, He Zhen-Hua3, Li Ya-Lin1,2, He Guang-Ming1,2, Zou Wen1,2, Zhang Dong-Jun1,2, and Liu Pu1,2
1. Geophysical Exploration Company, Chuanqing Drilling Engineering Co. Ltd., CNPC, Chengdu 610213, China.
2. Mountain Geophysical Technology Test Center, CNPC, Chengdu 610213, China.
3. Key “Earth Detection and Information Technology” Lab of Ministry of Education, Chengdu University of Technology, Chengdu 610059, China.
 全文: PDF (647 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 由于地震数据中包含的噪声在不同频率或者频带数据中的分布强度存在差异,使得全频带数据上进行的噪声衰减处理改变了地震反射波信号的动力学特征,干扰后期的地震资料解释、储层预测、油气检测等问题,提出边界和振幅特性保持自适应噪声衰减方法。首先应用小波包变换对全频带地震数据进行多频段划分,然后对分频段数据进行非线性各向异性倾角导向边界保持自适应滤波处理。在该方法中,由结构张量计算的扩散张量实现自适应地确定平滑滤波方向,加入的不连续结构置信度量和不连续性算子自适应地控制不连续结构特征的保持程度,引入的去相关滤波迭代停止准则自适应地确定滤波迭代次数。这些参数的引入具有减少处理人员的干预和人为的主观性,且执行简单的特点。对合成地震记录和实际地震记录处理结果表明,提议的方法能够自适应地衰减地震数据中噪声,同时既能保持地震反射波中有效的不连续性信息,也能有效地保持有效信号的频率分布规律。能够为后期的地震资料解释和分析提供高品质的基础数据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡涵鹏
贺振华
李亚林
何光明
邹文
张洞君
刘璞
关键词多尺度   非线性各向异性   倾角导向滤波   噪声衰减   迭代停止准则   置信度量     
Abstract: Noise intensity distributed in seismic data varies with different frequencies or frequency bands; thus, noise attenuation on the full-frequency band affects the dynamic properties of the seismic reflection signal and the subsequent seismic data interpretation, reservoir description, hydrocarbon detection, etc. Hence, we propose an adaptive noise attenuation method for edge and amplitude preservation, wherein the wavelet packet transform is used to decompose the full-band seismic signal into multiband data and then process these data using nonlinear anisotropic dip-oriented edge-preserving filtering. In the filtering, the calculated diffusion tensor from the structure tensor can be exploited to establish the direction of smoothing. In addition, the fault confidence measure and discontinuity operator can be used to preserve the structural and stratigraphic discontinuities and edges, and the decorrelation criteria can be used to establish the number of iterations. These parameters can minimize the intervention and subjectivity of the interpreter, and simplify the application of the proposed method. We applied the proposed method to synthetic and real 3D marine seismic data. We found that the proposed method could be used to attenuate noise in seismic data while preserving the effective discontinuity information and amplitude characteristics in seismic reflection waves, providing high-quality data for interpretation and analysis such as high-resolution processing, attribute analysis, and inversion.
Key wordsMultiscale   nonlinear anisotropic   dip-oriented filtering   noise attenuation   stopping criterion   iteration   confidence measure   
收稿日期: 2012-12-09;
基金资助:

本研究由国家自然科学基金资助项目(编号:41174114)和国家科技重大专项(编号:2011ZX05023- 005-010)资助。

引用本文:   
蔡涵鹏,贺振华,李亚林等. 边界和振幅特性保持的自适应噪声衰减方法[J]. 应用地球物理, 2014, 11(3): 289-300.
CAI Han-Peng,HE Zhen-Hua,LI Ya-Lin et al. An adaptive noise attenuation method for edge and amplitude preservation[J]. APPLIED GEOPHYSICS, 2014, 11(3): 289-300.
 
[1] Albinhassan, N.M., Luo, Y., and Al-Faraj, M.N., 2006, 3D edge-preserving smoothing and applications: Geophysics, 71(4), 5 -11.
[2] Al-Dossary, S., and Marfurt, K.J., 2007, Lineament-Preserving filtering: Geophysics, 72(1), 1 - 8.
[3] Bakker, P., 2002, Image structure analysis for seismic interpretation: Technische Universiteit Delft, Netherlands.
[4] Bareclos, Z. A. C., Boaventura, M., and Silva, E., 2003, A well-balanced flow equation for noise removal and edge detection: IEEE Transactions on Image Processing, 12(7), 751 - 762.
[5] Bekara, M., and Van der Baan, M., 2009, Random and coherent noise attenuation by empirical mode decomposition: Geophysics, 74(5), 89 - 97.
[6] Cai, H.P., He, Z.H., and Huang, D.J., 2011, Seismic data denoising based on mixed time-frequency methods: Applied Geophysics, 8(4), 319 - 327.
[7] Chen, C.R., and Zhou, X.X., 2000, Improving resolution of seismic data using wavelet spectrum whitening: Oil Geophysics Prospecting, 35(6), 703 - 709.
[8] Chen, K., 2005, Adaptive smoothing via contextual and local discontinuities: IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10), 1552 - 1567.
[9] Chopra, S., and Marfurt, J.K., 2007, Seismic attributes for prospect identification and reservoir characterization: SEG Geophysical Developments Series No.11, 153 - 154.
[10] Fehmers, G. and Hocker, C., 2003, Fast structural interpretation with structure-oriented filtering: Geophysics, 68(4), 1286 - 1293.
[11] Gan, J.Y., and Liang, Y., 2006, Iris recognition based on local wavelet transform and singular value decomposition: Computer Engineering and Applications, 42(6), 92 - 94.
[12] Hodgson, L., Whitcombe, D., Lancaster, S., et al, 2002, Frequency slice filtering - A novel method of seismic noise attenuation: 72th SEG Annual International Meeting, Expanded Abstracts, 2214 - 2218.
[13] Hoeber, H. C., Brandwood, S., and Whitcombe, D.N., 2006, Structurally Consistent Filtering:, 68th EAGE Annual International Conference and Exhibition, Extended Abstracts, 20 - 24.
[14] Kadlec, B.J., Dorn, G.A., and Tufo, H.M., 2008, Confidence and curvature guided level sets for channel segmentation: 78th SEG Annual International Meeting, Expanded Abstracts, 879 - 883.
[15] Lavialle, O., Pop, S., Germain, C., et al., 2007, Seismic fault preserving diffusion: Journal of Applied Geophysics, 61(2), 132 - 141.
[16] Li, Q.Z., 1993, The way to obtain a better resolution in seismic prospecting: A systematical analysis of high resolution seismic exploration seismic: Petroleum Industry Press, Beijing.
[17] Li, S.F., Dong, F.A., Wu, Y.L., et al., 2005, Iteration stopping criterion for image anisotropic diffusion filter: Journal of Air Force Engineering University (Natural Science Edition), 6(5), 70 - 72.
[18] Liu, Y., 2013, Noise reduction by vector median filtering: Geophysics, 78(3), V79-V86.
[19] Luo, Y., Marhoon, M., Al-Dossary, S., et al., 2002, Edge-preserving smoothing and applications: The Leading Edge, 21(2),136 - 158.
[20] Mallat, S., 2002, A wavelet tour of signal processing (Second edition): China Machine Press, Beijing.
[21] Perona, P., and Malik, J., 1990, Scale-space and edge detection using anisotropic diffusion: IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629 - 639.
[22] Shen, H.Y., and Li, Q. C., 2010, SVD (Singular value decomposition) seismic wave field noise elimination in frequency domain: Oil Geophysics Prospecting, 45(2), 185 - 189.
[23] Solo, V., 2001, Automatic stopping criterion for anisotropic diffusion: Proc IEEE Proceeding on Acoustics, Speech and Signal Processing, 6, 3929 -3932, IEEE Press, Salt Lake City.
[24] Weickert, J., 1999, Coherence enhancing diffusion filtering: International Journal of Computer Vision, 31(2/3), 111 - 127.
[25] Yang, P.J., Mu, X., and Zhang, J.T., 2010, Orientational edge preserving fault enhance: Chinese Journal of Geophysics, 53(12), 2992 - 2997.
[26] Zhou, Y., Whitcombe, D.N., and Hodgson, L., 2010, Dip-adaptive structurally conformable filtering using 2D complex wavelet transform: 56th SEG Annual International Meeting, Expanded Abstracts, 3534 - 3538.
[1] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[2] 孙思源,殷长春,高秀鹤,刘云鹤,任秀艳. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
[3] 赵玉敏,李国发,王伟,周振晓,唐博文,张文波. 基于数据驱动和反演策略的时空域随机噪声衰减方法[J]. 应用地球物理, 2017, 14(4): 543-550.
[4] 陈双全, 曾联波, 黄平, 孙绍寒, 张琬璐, 李向阳. 多尺度裂缝综合预测应用研究[J]. 应用地球物理, 2016, 13(1): 80-92.
[5] 甘叔玮, 王守东, 陈阳康, 陈江龙, 钟巍, 张成林. 基于相似度权重算子和f − x域经验模态分解的随机噪声衰减方法[J]. 应用地球物理, 2016, 13(1): 127-134.
[6] 李媛媛, 李振春, 张凯, 张旋. 基于双级并行的弹性波频率域全波形多尺度反演方法[J]. 应用地球物理, 2015, 12(4): 545-554.
[7] 隋京坤, 郑晓东, 李艳东. 一种基于振幅谱的地震相干属性计算方法[J]. 应用地球物理, 2015, 12(3): 353-361.
[8] 马彦彦, 李国发, 王峣钧, 周辉, 张保江. F-X域复数经验模态分解去噪方法[J]. 应用地球物理, 2015, 12(1): 47-54.
[9] 刘财, 陈常乐, 王典, 刘洋, 王世煜, 张亮. 基于二维希尔伯特变换的地震倾角求取方法及其在随机噪声衰减中的应用[J]. 应用地球物理, 2015, 12(1): 55-63.
[10] 刘财, 李博南, 赵旭, 刘洋, 鹿琪. 基于频变AVO技术对多尺度裂缝内流体属性反演与识别[J]. 应用地球物理, 2014, 11(4): 384-394.
[11] 包乾宗, 李庆春, 陈文超. 基于Curvelet变换的探地雷达资料噪声衰减方法[J]. 应用地球物理, 2014, 11(3): 301-310.
[12] 陈学华, 杨威, 贺振华, 钟文丽, 文晓涛. 三维多尺度体曲率的算法及应用[J]. 应用地球物理, 2012, 9(1): 65-72.
[13] 刘国昌, 陈小宏, 李景叶, 杜婧, 宋家文. 基于非稳态多项式拟合的地震噪声衰减方法研究[J]. 应用地球物理, 2011, 8(1): 18-26.
[14] 王德利, 仝中飞, 唐晨, 朱恒. Curvelet阈值迭代法地震随机噪声压制[J]. 应用地球物理, 2010, 7(4): 315-324.
[15] 郑静静, 印兴耀, 张广智, 武国虎, 张作胜. 基于第二代Curvelet变换的面波压制[J]. 应用地球物理, 2010, 7(4): 325-335.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司