APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (2): 170-180    DOI: 10.1007/s11770-013-0375-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于压缩感知理论与傅立叶变换的地震数据重建
张华1,2,陈小宏2,吴信民1
1. 东华理工大学放射性地质与勘探技术国防重点学科实验室,江西抚州 344000
2. 中国石油大学(北京)海洋石油勘探国家工程实验室,北京 102249
Seismic data reconstruction based on CS and Fourier theory
Zhang Hua1,2, Chen Xiao-Hong2, and Wu Xin-Min1
1. Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China Institute of Technology, Fuzhou, Jiangxi 344000, China.
2. National Engineering Laboratory for Offshore Oil Exploration, China University of Petroleum, Beijing 102249, China.
 全文: PDF (1524 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 传统的地震勘探数据采样必须遵循奈奎斯特采样定理,而本文基于新发展的压缩感知理论,在突破传统采样定理限制的基础上,利用随机欠采样方法将传统规则欠采样所带来的互相干假频转化成较低幅度的不相干噪声,从而将数据重建问题转为更简单的去噪问题。在数据重建过程中引入凸集投影算法(POCS),采用指数规律衰减的阈值参数,在每次迭代过程中,改变以往从时间到空间都需要进行正反变换的做法,提出只对地震数据空间方向进行正反变换,从而可以减少内存空间,提高运算速度,并且也分析了本文POCS算法的抗噪声与反假频能力,同时我们也对二维和三维地震数据重建进行了比较。理论模型和实际数据表明本文方法效果明显,这对于指导复杂地区数据采集、缺失地震道重建及降低勘探成本方面具有重要的实用价值。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张华
陈小宏
吴信民
关键词傅立叶变换   压缩感知   凸集投影   数据重建     
Abstract: Traditional seismic data sampling follows the Nyquist sampling theorem. In this paper, we introduce the theory of compressive sensing (CS), breaking through the limitations of the traditional Nyquist sampling theorem, rendering the coherent aliases of regular undersampling into harmless incoherent random noise using random undersampling, and effectively turning the reconstruction problem into a much simpler denoising problem. We introduce the projections onto convex sets (POCS) algorithm in the data reconstruction process, apply the exponential decay threshold parameter in the iterations, and modify the traditional reconstruction process that performs forward and reverse transforms in the time and space domain. We propose a new method that uses forward and reverse transforms in the space domain. The proposed method uses less computer memory and improves computational speed. We also analyze the antinoise and anti-aliasing ability of the proposed method, and compare the 2D and 3D data reconstruction. Theoretical models and real data show that the proposed method is effective and of practical importance, as it can reconstruct missing traces and reduce the exploration cost of complex data acquisition.
Key wordsFourier transform   compressive sensing (CS)   projection onto convex sets (POCS)   data reconstruction   
收稿日期: 2012-02-15;
基金资助:

本项研究由国家自然科学基金(编号:41174107)和国家科技油气重大专项(编号:2011ZX05023-005)联合资助。

引用本文:   
张华,陈小宏,吴信民. 基于压缩感知理论与傅立叶变换的地震数据重建[J]. 应用地球物理, 2013, 10(2): 170-180.
ZHANG Hua,CHEN Xiao-Hong,WU Xin-Min. Seismic data reconstruction based on CS and Fourier theory
[J]. APPLIED GEOPHYSICS, 2013, 10(2): 170-180.
 
[1] Abma, R., and Kabir, N., 2006, 3D interpolation of irregular data with a POCS algorithm: Geophysics, 71(5), 91 - 97.
[2] Bregman, L., 1965, The method of successive projection for finding a common point of convex sets: Soviet Math, 6(3), 688 - 692.
[3] Candès, E., Demanet, L., Donoho, D., et al., 2006, Fast discrete curvelet transforms: SIAM Multiscale Modeling and Simulation, 5(1), 861 - 899.
[4] Donoho, D., L., 2006, Compressed sensing: IEEE Transactions on information Theory. 52(4), 1289-1306.
[5] Gao, J. J., Chen, X. H., and Li, J. Y., 2011, The reconstruction method for irregular seismic data: Oil Geophysical prospecting (in Chinese), 46(1), 40 - 46.
[6] Gao, J. J., Chen, X. H., Li, J. Y., et a1., 2010, Irregular seismic data reconstruction based on exponential threshold model of POCS method: Applied Geophysics, 7(3), 229 - 238.
[7] Galloway, E., and Sacchi, M., 2007, POCS method for seismic data reconstruction of irregularly sampled data: CSPG Conference, Calgary, Canada, 555.
[8] Herrmann, F. J., 2010, Randomized sampling and sparsity: Getting more information from fewer samples: Geophysics, 173 - 187.
[9] Hennenfent, G., Fenelon, L., and Herrmann, F. J., 2010, Nonequispaced curvelet transform for seismic data reconstruction: A sparsity- promoting approach: Geophysics, 75(6), 203 - 210.
[10] Hennenfent, G., and Herrmann, F. J., 2008, Simply denoise: wavefield reconstruction via jittered under-sampling: Geophysics 73(3), 19 - 28.
[11] Jin, S., 2010, 5D seismic data regularization by a damped least-norm Fourier inversion: Geophysics, 75(6), 103 - 111.
[12] Ma, J. W., Tang, G., and Tang, W., 2010, Recovery of incomplete seismic data based on Curvelet transform and compressed sensing: Chinese Geophysical Year Meeting (in Chinese). ChangSha, 656 - 659.
[13] Kreimer, N., and Sacchi, M., 2012, A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation: Geophysics 77(3), 113 - 122.
[14] Liu, B., 2004, Multi-dimensional reconstruction of seismic data: Ph.D. Thesis, University of Alberta, Canada, 1 - 15.
[15] Naghizadeh, M., and Sacchi, M. D., 2010a, Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data: Geophysics, 75(6), 189 - 202.
[16] Ozkan, M., Tekalp, M., and Sezan, M., 1994, POCS based restoration of space-varying blurred images: IEEE Transactions on Image Processing, 3(4), 450 - 454.
[17] Trad, D., Ulryeh, T., and Sacchi, M., 2003, Latest view of sparse Radon transform: Geophysics, 68(1), 386 - 399.
[18] Trad, D. O., 2009, Five-dimensional interpolation: Recovering from acquisition constraints: Geophysics, 74(6), 123 - 132.
[19] Tang, G., and Yang, H. Z., 2010, Seismic data compression and reconstruction based oil Poisson Disk sampling: Chinese J. Geophys. (in Chinese), 53(9), 2181 - 2188.
[20] Tang, G., 2010.Seismic Data Reconstruction and Denoising based on Compressive Sensing and Sparse Representation: Ph.D.thesis, Tsinghua University (in Chinese), 62 - 65.
[21] Vassallo, M., A. Ozbek, K. Ozdemir., and K. Eggenberger., 2010, Crossline wavefield reconstruction from multicomponent streamer data: Part 1 -Multichannel interpolation by matching pursuit (MIMAP) using pressure and its crossline gradient: Geophysics, 75(6), 53 - 67.
[22] Wang, J. F., Ng, M., and Perz, M., 2010, Seismic data interpolation by greedy local Radon transform: Geophysics, 75(6), 225 - 234.
[23] Xu, S., Zhang, Y., Pham, D., and Lambare, G., 2005, Antileakage Fourier transform for seismic data regularization: Geophysics, 70(4), 87 - 95.
[1] 李广,肖晓,汤井田,李晋,朱会杰,周聪,严发宝. 基于压缩感知重构算法和形态滤波的AMT近源干扰压制[J]. 应用地球物理, 2017, 14(4): 581-590.
[2] 张华,陈小宏,张落毅. 基于曲波变换的三维地震数据同时重建和噪声压制[J]. 应用地球物理, 2017, 14(1): 87-95.
[3] 杨亚鹏, 吴美平, 唐刚. 基于L1范数凸二次规划方法的航空重力测量数据稀疏重构[J]. 应用地球物理, 2015, 12(2): 147-156.
[4] 葛子建, 李景叶, 潘树林, 陈小宏. 一种快速收敛的抗噪POCS地震数据重构方法[J]. 应用地球物理, 2015, 12(2): 169-178.
[5] 张军华, 张彬彬, 张在金, 梁鸿贤, 葛大明. 地震低频信息缺失特征分析及拓频方法研究[J]. 应用地球物理, 2015, 12(2): 212-220.
[6] 蔡瑞, 赵群, 佘德平, 杨丽, 曹辉, 杨勤勇. 2D地震数据规则化中Bernoulli随机欠采样方案[J]. 应用地球物理, 2014, 11(3): 321-330.
[7] 勾福岩, 刘财, 刘洋, 冯晅, 崔芳姿. 基于Bregman迭代的复杂地震波场稀疏域插值方法[J]. 应用地球物理, 2014, 11(3): 277-288.
[8] 柴玉璞. 位场波数域转换算法误差方程及其应用[J]. 应用地球物理, 2009, 6(3): 205-216.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司