APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (2): 181-190    DOI: 10.1007/s11770-013-0380-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于L0范数最小化的地球物理数据稀疏重构
陈国新,陈生昌,王汉闯,张博
浙江大学地球科学系,杭州 310027
Geophysical data sparse reconstruction based on L0-norm minimization
Chen Guo-Xin1, Chen Sheng-Chang1, Wang Han-Chuang1, and Zhang Bo1
1. Department of Earth Sciences, Zhejiang University, Hangzhou 310027, China.
 全文: PDF (1170 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在实际的地球物理数据采集工作中,会因为多方面的客观原因导致数据缺失,对缺失数据进行插值重构是地球物理数据处理和解释的基础问题。基于地球物理数据自身或在变换域内的稀疏性,将地球物理数据的重构转化为稀疏优化问题可提高数据重构的精确度与稳定性。本文建立了 范数最小化的地球物理数据稀疏重构模型,针对不同规模、不同特征的地球物理数据引入了两种不同类型的 范数最小优化问题的近似求解算法,即基于 范数最小化的迭代再加权最小二乘算法与具有快速收敛性的快速迭代硬阈值法。理论分析与数值试验表明,将迭代再加权最小二乘算法应用到位场数据重构中可发挥其收敛速度快,计算时间短,精度高的优势,而快速迭代硬阈值法更适合处理地震数据,相对于传统的迭代硬阈值法计算效率有了很大的提高。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈国新
陈生昌
王汉闯
张博
关键词地球物理数据   稀疏重构   范数最小化   迭代再加权最小二乘   快速迭代硬阈值     
Abstract: Missing data are a problem in geophysical surveys, and interpolation and reconstruction of missing data is part of the data processing and interpretation. Based on the sparseness of the geophysical data or the transform domain, we can improve the accuracy and stability of the reconstruction by transforming it to a sparse optimization problem. In this paper, we propose a mathematical model for the sparse reconstruction of data based on the L0-norm minimization. Furthermore, we discuss two types of the approximation algorithm for the L0-norm minimization according to the size and characteristics of the geophysical data: namely, the iteratively reweighted least-squares algorithm and the fast iterative hard thresholding algorithm. Theoretical and numerical analysis showed that applying the iteratively reweighted least-squares algorithm to the reconstruction of potential field data exploits its fast convergence rate, short calculation time, and high precision, whereas the fast iterative hard thresholding algorithm is more suitable for processing seismic data, moreover, its computational efficiency is better than that of the traditional iterative hard thresholding algorithm.
Key wordsGeophysical data   sparse reconstruction   L0-norm minimization   iteratively reweighted least squares   fast iterative hard thresholding   
收稿日期: 2013-01-24;
基金资助:

本研究由国家自然科学基金项目(编号:41074133)资助。

引用本文:   
陈国新,陈生昌,王汉闯等. 基于L0范数最小化的地球物理数据稀疏重构[J]. 应用地球物理, 2013, 10(2): 181-190.
CHEN Guo-Xin,CHEN Sheng-Chang,WANG Han-Chuang et al. Geophysical data sparse reconstruction based on L0-norm minimization[J]. APPLIED GEOPHYSICS, 2013, 10(2): 181-190.
 
[1] Beck, A., and Teboulle, M., 2009, A fast iterative shrinkage-thresholding algorithm for linear inverse problems: Siam J. Imaging Sciences, 2(1), 183 - 202.
[2] Bioucas-Dias, J. M., and Figueiredo, M. A. T., 2007, A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration: IEEE Transactions On Image Processing, 16(12), 2992 - 3004.
[3] Blumensath, T., and Davies, M. E., 2010, Normalized iterative hard thresholding: guaranteed stability and performance: IEEE Journal of Selected Topics in Signal Processing, 4(2), 298 - 309.
[4] Blumensath, T., and Davies, M., 2009, Iterative hard thresholding for compressed sensing: Applied and Computational Harmonic Analysis, 27(3), 265 - 274.
[5] Blumensath, T., 2012, Accelerated iterative hard thresholding: Signal Processing, 92, 752 - 756.
[6] Candès, E., and Donoho, D., 2000, Curvelets—A surprisingly active nonadaptive representation for objects with edges: Vanderbilt University Press, Nashville, 105 - 120.
[7] Candès, E., and Wakin, M., 2008, An introduction to compressive sampling: IEEE Signal Processing Magazine, 25(2), 21 - 30.
[8] Cao, J. J., Wang, Y. F., and Yang, C. C., 2012, Seismic data restoration based on compressive sensing using the regularization and zero-norm sparse optimization: Chinese J. Geophys. (in Chinese) 55(2), 596 - 607.
[9] Donoho, D. L., and Tsaig, Y., 2006, Extensions of compressed sensing: Signal Processing, 86(3), 533 - 548.
[10] Donoho, D. L., 2006, Compressed sensing: IEEE Transactions on Information Theory, 52(4), 1289 - 1306.
[11] Duijndam, A. J. W., Schonewille, M. A., and Hindriks, C. O. H., 1999, Reconstruction of band-limited signals, irregularly sampled along one spatial direction : Geophysics, 2, 524 - 538.
[12] Dunbar, D., and Humphreys, G., 2006, A spatial data structure for poisson-disk sample generation: ACM Transactions on Graphics, 25(3), 503 - 508.
[13] Guo, L. H., Meng, X. H., and Guo, Z. H., 2005, Gridding methods of geophysical irregular data in space domain: Geophysical & Geochemical Exploration. (in Chinese), 29(5), 438 - 442.
[14] Hennenfen, G., and Herrmann, F. J., 2008, Simply denoise: wavefield reconstruction via jittered undersampling: Geophysics, 73(3), 19 - 28.
[15] Herrmann, J., and Hennenfent, G., 2008, Nonparametric seismic data recovery with curvelet frames: Geophysical Journal International, 173(1), 1 - 5.
[16] Jiao, L. C., Yang, S. Y., and Liu, F., 2011, Development and Prospect of Compressive Sensing: Acta Electronica Sinica, 39(7), 1651 - 1662.
[17] Levy, S., and Fullagar, P. k., 1981, Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution: Geophysics, 46(9), 1235 - 1243.
[18] Li, X., Aravkin, A. Y., and Leeuwen, T. V., 2012, Fast-randomized full-waveform inversion with compressive sensing: Geophysics, 77(3), 13 - 17.
[19] Liu, X. W., Liu, H., and Liu, B., 2004, A study on algorithm for reconstruction of de-alias uneven seismic data: Chinese J. Geophys. (in Chinese), 47(2), 299 - 305.
[20] Mallat, S., and Zhang, Z., 1993, Matching pursuit with time-frequency dictionaries: IEEE Trans. on Signal Processing, 41(12), 3397 - 3415.
[21] Meng, X. H., Hou, J. Q., and Liang, H. Y., 2002, The fast realization of discrete smooth interpolation in the interpolation of potential data: Geophysical & Geochemical Exploration (in Chinese), 26(4), 302 - 306.
[22] Pei, Y. L., 2009, The method research of sparse constraint deconvolution and wave impedance inversion: Master Thesis Beijing, China University of Geosciences (Beijing).
[23] Qiu, K., and Dogandzic, A., 2012, Sparse signal reconstruction via ECME Hard Thresholding: IEEE Transactions on Signal Processing, 60(9), 4551 - 4569.
[24] Tang, G., Ma, J. W., and Yang, H. Z., 2012, Seismic data denoising overcomplete based on learning-type overcomplete dictionaries: Applied Geophysics, 9(1), 27 - 32.
[25] Tang, G., and Yang, H. Z., 2010, Seismic data compression and reconstruction based on poisson disk sampling: Chinese J Geophys (in Chinese), 53(9), 2181 - 2188.
[26] Tikhonov, A. N., and Arsenin, V. Y., 1977, Solutions of ill-posed problems: John Wiley and Sons, New York.
[27] Trad, D., Ulrych, T., and Sacchi, M., 2003, Latest view of sparse radon transform: Geophysics, 68(1), 386 - 399.
[28] Tropp, J. A., and Gilbert, A. C., 2007, Signal recovery from random measurements via orthogonal matching pursuit: IEEE Transactions on Information Theory, 53(12), 4655 - 4666.
[29] Wang, W. Y., and Qiu, Z. Y., 2011, The research to a stable minimum curvature gridding method in potential data processing: Progress in Geophys.(in Chinese), 26(6), 2003 - 2010.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司