APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (1): 63-70    DOI: 10.1007/s11770-013-0361-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
用于地震波场模拟的PML边界衰减因子研究
杨皓星,王红霞
国防科技大学理学院数学与系统科学系,湖南 长沙 410073
A study of damping factors in perfectly matched layers for the numerical simulation of seismic waves
Yang Hao-Xing1 and Wang Hong-Xia1
1. School of Science, National University of Defense Technology, Changsha 410073, China.
 全文: PDF (605 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在地震波场数值模拟中,为了消除由人为边界产生的边界反射,需要引进边界吸收条件。本文从声波方程完全匹配层吸收边界的经典方法出发,基于高斯函数任意阶光滑的特点,提出了一种高斯型衰减因子,分析比较该因子与一般衰减因子的性质,并基于均匀与层状速度模型分别进行了数值模拟计算。数值结果显示,当选择相同的PML边界吸收层层数时,高斯型衰减因子的吸收效果明显优于一般的衰减因子,边界反射更少,信噪比更高;对比最近提出的正弦型衰减因子,在信噪比接近的情况下,高斯型衰减因子所需的PML吸收层层数更少。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨皓星
王红霞
关键词地震波场模拟   完全匹配层PML   衰减因子     
Abstract: When simulating seismic wave propagation in free space, it is essential to introduce absorbing boundary conditions to eliminate reflections from artificially truncated boundaries. In this paper, a damping factor referred to as the Gaussian damping factor is proposed. The Gaussian damping factor is based on the idea of perfectly matched layers (PMLs). This work presents a detailed analysis of the theoretical foundations and advantages of the Gaussian damping factor. Additionally, numerical experiments for the simulation of seismic waves are presented based on two numerical models: a homogeneous model and a multi-layer model. The results show that the proposed factor works better. The Gaussian damping factor achieves a higher Signal-to-Noise Ratio (SNR) than previously used factors when using same number of PMLs, and requires less PMLs than other methods to achieve an identical SNR.
Key words simulation of seismic wave   perfectly matched layer (PML)   damping factor   
收稿日期: 2011-11-01;
基金资助:

本研究由国家自然科学基金(编号:61072118)资助。

引用本文:   
杨皓星,王红霞. 用于地震波场模拟的PML边界衰减因子研究[J]. 应用地球物理, 2013, 10(1): 63-70.
YANG Hao-Xing,WANG Hong-Xia. A study of damping factors in perfectly matched layers for the numerical simulation of seismic waves[J]. APPLIED GEOPHYSICS, 2013, 10(1): 63-70.
 
[1] Berenger, J. P., 1994, A perfectly matched layer for the absorption of electromagnetics waves: Journal Computation Physics, 114, 185 - 200.
[2] Burns, D. R., 1992, Acoustic and elastic scattering from seamounts in three dimensions-numerical modeling study: J. Acoust. Soc. Amer., 92, 2784 - 2791.
[3] Cerjan, C., Kosloff, D., Kosloff, R., and Reshef, M., 1985, A nonreflecting boundary condition for discrete acoustic and elastic wave equations: Geophysics, 50(4), 705 - 708.
[4] Clayton, R., Engquist, B., 1977, Absorbing boundary condition for acoustic and elastic wave equations: Bull. Sersm. Soc. Am., 67, 1529 - 1540.
[5] Collino, F., and Tsogka, C., 2001, Application of the perfectly matched absorbing layer model to the linear elasto-dynamic problem in anisotropic heterogeneous media: Geophysics, 66(1), 294 - 307.
[6] Du, Q. Z., Sun, R. Y., Qin, T., Zhu, Y. T., and Bi, L. F., 2010, A study of perfectly matched layers for joint multicomponent reverse-time migration: Applied Geophysics, 7(2), 166 - 173.
[7] Hastings, F., Schneider, J. B., and Broschat, S. L., 1996, Application of the perfectly matched absorbing layer (PML) absorbing boundary condition to elastic wave propagation: Journal of Acoustic Society of America, 100(5), 3061 - 3069.
[8] Higdon, R. L., 1986, Absorbing boundary conditions for difference approximations to the multidimensional wave equation: Math. Comp., 47, 437 - 459.
[9] Higdon, R. L., 1987, Numerical absorbing boundary conditions for the wave equation: Math. Comp., 49, 65 - 90.
[10] Higdon, R. L., 1991, Absorbing boundary condition for elastic waves: Geophysics, 56(2), 231 - 241.
[11] Komatitsch, D., Tromp, J., 2003, A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation: Geophysical Journal International, 154(1), 146 - 150.
[12] Liao, Z. P., Wong, H. L., Yang, B. P., and Yuan, Y. F., 1984, A transmitting boundary for transient wave analysis: Scientia Sinica (Series A), 27(10), 1063 - 1076.
[13] Wang, T., and Tang, X. M., 2003, Finite-difference modeling of elastic wave propagation: a nonsplitting perfectly matched layer approach: Geophysics, 68(5), 1749 - 1755.
[14] Wang, Y. G., Xing, W. J., Xie, W. X., and Zhu, Z. L., 2007, Study of absorbing boundary condition by perfectly matched layer: Journal of China University of Petroleum (In Chinese), 31(1), 19 - 24.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司