APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (1): 71-78    DOI: 10.1007/s11770-013-0370-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于精细积分法的三维弹性波数值模拟
段玉婷1,胡天跃1,姚逢昌2,张研2
1.北京大学地球与空间科学学院,北京 100871;
2. 中国石油勘探开发研究院,北京 100083
3D elastic wave equation forward modeling based on the precise integration method
Duan Yu-Ting1, Hu Tian-Yue1, Yao Feng-Chang2, and Zhang Yan2
1. School of Earth and Space Sciences, Peking University, Beijing 100871, China.
2. Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China.
 全文: PDF (747 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 波动方程有限差分法是地震数值模拟中的一种重要的方法,对理解和分析地震传播规律、分析地震属性和解释地震资料有着非常重要的意义。但是有限差分法由于其离散化的思想,产生了不稳定性。精细积分法在有限差分法的基础上,在时间域采用解析解的表达形式,在空间域保留任意差分格式,发展成为半解析的数值方法。本文结合并发展了以往学者的成果,推导了任意精细积分法的三维弹性波正演模拟计算公式,并对其稳定性进行了数值分析。在计算实例中,实现了精细积分法二维和三维弹性波模型的地震正演模拟,对计算结果的分析表明,精细积分法反射信号走时准确,稳定性好,弹性波场相较于声波波场,弹性波波场成分更为丰富,包含了更多波型成分(PP-和PS- 反射波、透射波和绕射波),这对实际地震资料的解释和储层分析有重要的意义。实践证明,该方法可直接应用到弹性波的地质模型的数值模拟中。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
段玉婷
胡天跃
姚逢昌
张研
关键词精细积分法   弹性波   波动方程   数值模拟     
Abstract: The Finite Difference (FD) method is an important method for seismic numerical simulations. It helps us understand regular patterns in seismic wave propagation, analyze seismic attributes, and interpret seismic data. However, because of its discretization, the FD method is only stable under certain conditions. The Arbitrary Difference Precise Integration (ADPI) method is based on the FD method and adopts an integration scheme in the time domain and an arbitrary difference scheme in the space domain. Therefore, the ADPI method is a semi-analytical method. In this paper, we deduce the formula for the ADPI method based on the 3D elastic equation and improve its stability. In forward modeling cases, the ADPI method was implemented in 2D and 3D elastic wave equation forward modeling. Results show that the travel time of the reflected seismic wave is accurate. Compared with the acoustic wave field, the elastic wave field contains more wave types, including PS- and PP- reflected waves, transmitted waves, and diffracted waves, which is important to interpretation of seismic data. The method can be easily applied to elastic wave equation numerical simulations for geological models.
Key wordsArbitrary difference   precise integration method   elastic waves   wave equation   seismic numerical simulation   
收稿日期: 2011-04-22;
基金资助:

本研究由国家科技重大专项(编号:2011ZX05004-003和2011ZX05014-006-006),国家重点基础研究发展计划(编号:2013CB228602)和国家自然科学基金(编号:40974066)。

引用本文:   
段玉婷,胡天跃,姚逢昌等. 基于精细积分法的三维弹性波数值模拟[J]. 应用地球物理, 2013, 10(1): 71-78.
DUAN Yu-Ting,HU Tian-Yue,YAO Feng-Chang et al. 3D elastic wave equation forward modeling based on the precise integration method[J]. APPLIED GEOPHYSICS, 2013, 10(1): 71-78.
 
[1] Aki, K., and Larner, K. L., 1980, Surface motion of a layered medium having an irregular interface du to incident plane SH waves: Journal of Geophysical Research, 70, 933 - 954
[2] Alford, R. M., Kelly, K. R., and Boore, D. M., 1974, Accuracy of finite-difference modeling of the acoustic equation: Geophysics, 39, 834 - 842.
[3] Duan, Y. T., Hu T. Y., and Li, J. Y., 2011, Application of a 3-D precise integration method for seismic modeling based on GPU: 81st Ann. Internat. Mtg., Soc. of Expl. Geophys., Expanded Abstract, 2850 - 2854.
[4] Etgen, J. T., and O'Brien, M. J., 2007, Computational methods for large-scale 3D acoustic finite-difference modeling: A tutorial: Geophysics, 72, SM223 - SM230.
[5] Jia, X. F., Wang, R. Q., and Hu, T. Y., 2003, The arbitrary difference precise integration method for solving the seismic wave equation: Earthquake Research in China, 19(3), 236 - 241.
[6] Li, J. Y., Tang G. Y., and Hu, T. Y., 2010, Optimization of a precise integration method for seismic modeling based on graphic processing unit: Earthquake Science, 23, 387 - 393.
[7] Marfurt, K. J., 1984, Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations: Geophysics, 49, 533 - 549.
[8] Mou, Y. G., and Pei, Z. L., 2005, Seismic numerical modeling for 3-D complex media: Petroleum Industry Press, China, 48 - 58.
[9] Qiang, S. Z., Wang, X. G., Tang, M. L., and Liu, M., 1999, On the arbitrary difference precise integration method and its numerical stability: Applied Mathematics and Mechanics, 20(3), 256 - 262.
[10] Tang, G. Y., Hu, T. Y., and Yang, J. H., 2007, Applications of a precise integration method in forward seismic modeling: 77th Ann. Internat. Mtg., Soc. of Expl. Geophys., Expanded Abstract, 2130 - 2133.
[11] Virieux, J., 1986, P-SV wave propagation in heterogeneous media: Velocity stress finite difference method: Geophysics, 51, 889 - 901.
[12] Wang, R. Q., Geng, W. F., and Wang, S. X., 2003, Seismic forward modeling by arbitrary difference precise integration: Oil Geophysical Prospecting, 38(3), 252 - 257.
[13] Wang, R. Q., Zhang, M., Fei, J. B., and Huang, W. F., 2006, Precise integral method for 3-D seismic forward modeling: Progress in Exploration Geophysics, 29(6), 394 - 397.
[14] Wang, M.F., and Qu, G. D., 2004, Assessment and improvement of precise time step integration method: Chinese Journal of Computation Mechanics, 21(6), 728 - 733.
[15] Zhong, W. X., 1994, On precise time-integration method for structural dynamics: Journal of Dalian University of Technology, 34(2), 131 - 136.
[16] Zhong, W. X., 1995, Subdomain precise integration method and numerical solution of partial differential equations: Computational Structural Mechanics and Applications, 12(2), 253 - 260.
[17] Zhong, W. X., 1996, Single point subdomain precise integration and finite difference: Chinese Journal of Theoretical and Applied Mechanics, 28(2), 159 - 163.
[1] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[2] 戴世坤,赵东东,张钱江,李昆,陈轻蕊,王旭龙. 基于泊松方程的空间波数混合域重力异常三维数值模拟[J]. 应用地球物理, 2018, 15(3-4): 513-523.
[3] 杨佳佳,栾锡武,何兵寿,方刚,潘军,冉伟民,蒋陶. 基于矢量波场逆时偏移的保幅角道集提取方法[J]. 应用地球物理, 2017, 14(4): 492-504.
[4] 胡松,李军,郭洪波,王昌学. 水平井随钻电磁波测井与双侧向测井响应差异及其解释应用[J]. 应用地球物理, 2017, 14(3): 351-362.
[5] 刘鑫,刘洋,任志明,蔡晓慧,李备,徐世刚,周乐凯. 三维弹性波正演模拟中的混合吸收边界条件[J]. 应用地球物理, 2017, 14(2): 270-278.
[6] 王建,孟小红,刘洪,郑婉秋,贵生. 余弦修正二项式窗的交错网格有限差分地震正演方法[J]. 应用地球物理, 2017, 14(1): 115-124.
[7] 付博烨,符力耘,魏伟,张艳. 超声岩石物理实验尾波观测中边界反射的影响分析[J]. 应用地球物理, 2016, 13(4): 667-682.
[8] 陶蓓,陈德华,何晓,王秀明. 界面不规则性对套后超声波成像测井响应影响的模拟研究[J]. 应用地球物理, 2016, 13(4): 683-688.
[9] 杨思通,魏久传,程久龙,施龙青,文志杰. 煤巷三维槽波全波场数值模拟与波场特征分析[J]. 应用地球物理, 2016, 13(4): 621-630.
[10] 常江浩,于景邨,刘志新. 煤矿老空水全空间瞬变电磁响应三维数值模拟及应用[J]. 应用地球物理, 2016, 13(3): 539-552.
[11] 张钱江,戴世坤,陈龙伟,强建科,李昆,赵东东. 基于网格加密-收缩的2.5D直流电法有限元模拟[J]. 应用地球物理, 2016, 13(2): 257-266.
[12] 张宫, 李宁, 郭宏伟, 武宏亮, 罗超. 远探测声反射波测井裂缝识别条件分析[J]. 应用地球物理, 2015, 12(4): 473-481.
[13] 王为中, 胡天跃, 吕雪梅, 秦臻, 李艳东, 张研. 弹性波变阶数旋转交错网格数值模拟[J]. 应用地球物理, 2015, 12(3): 389-400.
[14] 李磊, 陈浩, 王秀明. 微地震定位的加权弹性波干涉成像法[J]. 应用地球物理, 2015, 12(2): 221-234.
[15] 刘洋, 李向阳, 陈双全. 高精度双吸收边界条件在地震波场模拟中的应用[J]. 应用地球物理, 2015, 12(1): 111-119.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司