APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (1): 53-62    DOI: 10.1007/s11770-013-0342-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
结合边界条件的截断高阶隐式有限差分方法
常锁亮1,2,3,刘洋1
1. 中国石油大学油气资源与探测国家重点实验室,北京市昌平区102249;
2. 太原理工大学矿业工程学院,山西省太原市030024;
3. 山西山地物探技术有限公司,山西省晋中市030600
A truncated implicit high-order finite-difference scheme combined with boundary conditions
Chang Suo-Liang1,2,3 and Liu Yang1
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 100083, China.
2. Taiyuan University of Technology, Taiyuan 030024, China.
3. Shanxi Shandi Geophy-Tech Co. Ltd, Jinzhong, 030600, China.
 全文: PDF (770 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 有限差分方法广泛应用于求解许多科技领域所涉及的偏微分方程,高阶显式有限差分方法通常用来提高求解精度,已经提出的高阶隐式有限差分方法和截断高阶显式有限差分方法可用来进一步提高模拟精度而不增加计算量。本文首先计算了针对常规网格上的一阶导数和二阶导数、交错网格上的一阶导数的有限差分系数,发现高阶隐式有限差分系数中存在一些小的系数。频散分析结果表明:忽略这些小的差分系数能够近似维持有限差分的精度,但是显著减小了计算量。然后,引入镜像对称边界条件来提高隐式有限差分方法的精度和稳定性,采用混合吸收边界条件来减小来自模型边界所不需要的反射。最后,给出了针对均匀和非均匀介质模型的弹性波模拟例子,表明了本文方法的优点。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
常锁亮
刘洋
关键词隐式有限差分   对称边界条件   高阶精度   截断   吸收边界条件   交错网格   数值模拟     
Abstract: In this paper, first we calculate finite-difference coefficients of implicit finite-difference methods (IFDM) for the first- and second-order derivatives on normal grids and first-order derivatives on staggered grids and find that small coefficients of high-order IFDMs exist. Dispersion analysis demonstrates that omitting these small coefficients can retain approximately the same order accuracy but greatly reduce computational costs. Then, we introduce a mirror-image symmetric boundary condition to improve IFDMs accuracy and stability and adopt the hybrid absorbing boundary condition (ABC) to reduce unwanted reflections from the model boundary. Last, we give elastic wave modeling examples for homogeneous and heterogeneous models to demonstrate the advantages of the proposed scheme.
Key wordsImplicit finite difference   symmetric boundary condition   high-order accuracy   truncation   absorbing boundary condition   staggered grid   numerical modeling   
收稿日期: 2012-04-11;
基金资助:

本研究由国家自然科学基金(课题编号:41074100)和教育部新世纪优秀人才支持计划基金(课题编号:NCET-10-0812)联合资助。

引用本文:   
常锁亮,刘洋. 结合边界条件的截断高阶隐式有限差分方法[J]. 应用地球物理, 2013, 10(1): 53-62.
CHANG Suo-Liang,LIU Yang. A truncated implicit high-order finite-difference scheme combined with boundary conditions[J]. APPLIED GEOPHYSICS, 2013, 10(1): 53-62.
 
[1] Bohlen, T., and Saenger, E. H., 2006, Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves: Geophysics, 71, T109 - T115.
[2] Dablain, M. A., 1986, The application of high-order differencing to the scalar wave equation: Geophysics, 51, 54 - 66.
[3] Dong, L., Ma, Z., Cao, J., Wang, H., Geng, J., Lei, B., and Xu, S., 2000, A staggered-grid high-order difference method of one-order elastic wave equation: Chinese Journal of Geophysics, 43, 411 - 419.
[4] Du, Q. Z., Li, B., and Hou B., 2009, Numerical modeling of seismic wavefields in transversely isotropic media with a compact staggered-grid finite difference scheme: Applied Geophysics, 6(1), 42 - 49.
[5] Emerman, S., Schmidt, W., and Stephen, R., 1982, An implicit finite-difference formulation of the elastic wave equation: Geophysics, 47, 1521 - 1526.
[6] Fornberg, B., 1987, The pseudospectral method - comparisons with finite differences for the elastic wave equation: Geophysics, 52, 483 - 501.
[7] Gold, N., Shapiro, S. A., and Burr, E., 1997, Modeling of high contrasts in elastic media using a modified finite difference scheme: 68th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1850 - 1853.
[8] Graves, R., 1996, Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences: Bulletin of the Seismological Society of America, 86, 1091 - 1106.
[9] Lele, S. K., 1992, Compact finite difference schemes with spectral-like resolution: Journal of Computational Physics, 103, 16 - 42.
[10] Liu, Y., Li, C., and Mou, Y., 1998, Finite-difference numerical modeling of any even-order accuracy: Oil Geophysical Prospecting (in Chinese), 33, 1 - 10.
[11] Liu, Y., and Wei, X. C., 2008, Finite-difference numerical modeling with even-order accuracy in two-phase anisotropic media: Applied Geophysics, 5, 107 - 114.
[12] Liu, Y., and Sen, M. K., 2010a, A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation: Geophysics, 75(2), A1 - A6.
[13] Liu, Y., and Sen, M. K., 2010b. A hybrid absorbing boundary condition for elastic wave modeling with staggered-grid finite difference: 80th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 2945 - 2949.
[14] Liu, Y., and Sen, M. K., 2009a, A practical implicit finite-difference method: Examples from seismic modeling: Journal of Geophysics and Engineering, 6(3), 231 - 249.
[15] Liu, Y., and Sen, M. K., 2009b, An implicit staggered-grid finite-difference method for seismic modeling: Geophysical Journal International, 179(1), 459 - 474.
[16] Liu, Y., and Sen, M. K., 2009c, Numerical modeling of wave equation by a truncated high-order finite-difference method: Earthquake Science, 22(2), 205 - 213.
[17] Moczo, P., Kristek, J., and Halada, L., 2000, 3D fourth-order staggered-grid finite-difference schemes: stability and grid dispersion: Bulletin of the Seismological Society of America, 90, 587 - 603
[18] Pei, Z., 2004, Numerical modeling using staggered-grid high order finite-difference of elastic wave equation on arbitrary relief surface: Oil Geophysical Prospecting (in Chinese), 39, 629 - 634.
[19] Robertsson, J., Blanch, J., and Symes, W., 1994, Viscoelastic finite-difference modeling: Geophysics, 59, 1444 - 1456.
[20] Saenger, E., and Bohlen, T., 2004, Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid: Geophysics, 69, 583 - 591.
[21] Virieux, J., 1986, P-SV wave propagation in heterogeneous media: Velocity stress finite difference method: Geophysics, 51, 889 - 901.
[22] Zhang, H., and Zhang, Y., 2007, Implicit splitting finite difference scheme for multi-dimensional wave simulation: 75th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 2011 - 2014.
[1] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[2] 成景旺,范娜,张友源,吕晓春. 基于贴体旋转交错网格的起伏地表地震波有限差分数值模拟[J]. 应用地球物理, 2018, 15(3-4): 420-431.
[3] 戴世坤,赵东东,张钱江,李昆,陈轻蕊,王旭龙. 基于泊松方程的空间波数混合域重力异常三维数值模拟[J]. 应用地球物理, 2018, 15(3-4): 513-523.
[4] 任英俊,黄建平,雍鹏,刘梦丽,崔超,杨明伟. 窗函数交错网格有限差分算子及其优化方法[J]. 应用地球物理, 2018, 15(2): 253-260.
[5] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[6] 胡松,李军,郭洪波,王昌学. 水平井随钻电磁波测井与双侧向测井响应差异及其解释应用[J]. 应用地球物理, 2017, 14(3): 351-362.
[7] 刘鑫,刘洋,任志明,蔡晓慧,李备,徐世刚,周乐凯. 三维弹性波正演模拟中的混合吸收边界条件[J]. 应用地球物理, 2017, 14(2): 270-278.
[8] 王建,孟小红,刘洪,郑婉秋,贵生. 余弦修正二项式窗的交错网格有限差分地震正演方法[J]. 应用地球物理, 2017, 14(1): 115-124.
[9] 杨思通,魏久传,程久龙,施龙青,文志杰. 煤巷三维槽波全波场数值模拟与波场特征分析[J]. 应用地球物理, 2016, 13(4): 621-630.
[10] 付博烨,符力耘,魏伟,张艳. 超声岩石物理实验尾波观测中边界反射的影响分析[J]. 应用地球物理, 2016, 13(4): 667-682.
[11] 陶蓓,陈德华,何晓,王秀明. 界面不规则性对套后超声波成像测井响应影响的模拟研究[J]. 应用地球物理, 2016, 13(4): 683-688.
[12] 常江浩,于景邨,刘志新. 煤矿老空水全空间瞬变电磁响应三维数值模拟及应用[J]. 应用地球物理, 2016, 13(3): 539-552.
[13] 张钱江,戴世坤,陈龙伟,强建科,李昆,赵东东. 基于网格加密-收缩的2.5D直流电法有限元模拟[J]. 应用地球物理, 2016, 13(2): 257-266.
[14] 冯彦, 孙涵, 蒋勇. 基于数据拟合的区域地磁场建模研究[J]. 应用地球物理, 2015, 12(3): 303-316.
[15] 王为中, 胡天跃, 吕雪梅, 秦臻, 李艳东, 张研. 弹性波变阶数旋转交错网格数值模拟[J]. 应用地球物理, 2015, 12(3): 389-400.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司