APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2010, Vol. 7 Issue (1): 74-87    DOI: 10.1007/s11770-010-0002-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
一种基于自适应分子分解的地层吸收补偿方法
汪玲玲,高静怀,张明
西安交通大学电子与信息工程学院波动与信息研究所,西安 710049
A method for absorption compensation based on adaptive molecular decomposition
Wang Ling-Ling1, Gao Jing-Huai1, and Zhang Ming1
1. Institute of Wave and Information, School of Electronic and Information, Xi’an Jiaotong University, Xi’an 710049, China.
 全文: PDF (1592 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文提出了一种基于自适应分子分解的地层吸收补偿方法。该方法能有效克服时频域地层吸收补偿方法中局部分析时窗端点反射子波截断和窗内子波重叠干涉对补偿效果带来的影响。该方法具体实现如下:首先根据地震信号振幅谱的时变特性,构造一组自适应分子标架,将地震信号变换到时频域;然后在时频域提取每个时窗内地震信号振幅谱的慢变分量(时变子波振幅谱);再在每个时窗内,利用相关系数构造目标函数,反演吸收补偿滤波器参数,得到吸收补偿滤波器;接着用吸收补偿滤波器对各时窗内信号的时频谱进行补偿,最后重构补偿后的时频系数,得到补偿后的地震记录。自适应分子分解的引入,使得本文方法可用于含有薄层(或薄互层)的非均匀粘弹性介质反射地震记录的地层吸收补偿。文中给出了模型及实际资料算例,验证了本文提出的方法的有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪玲玲
高静怀
张明
关键词自适应分子分解   地层吸收   补偿   分辨率     
Abstract: In this paper, we present a new method for seismic stratigraphic absorption compensation based on the adaptive molecular decomposition. Using this method, we can remove most of the effects resulting from wavelets truncation and interference which usually exist in the common time-frequency absorption compensation method. Based on the assumption that the amplitude spectrum of the source wavelet is smooth, we first construct a set of adaptive Gabor frames based on the time-variant properties of the seismic signal to transform the signal into the time-frequency domain and then extract the slowly varying component (the wavelet’s time-varying amplitude spectrum) in each window in the time-frequency domain. Then we invert the absorption compensation filter parameters with an objective function defined using the correlation coefficients in each window to get the corresponding compensation filters. Finally, we use these filters to compensate the time-frequency spectrum in each window and then transform the time-frequency spectrum to the time domain to obtain the absorption-compensated signal. By using adaptive molecular decomposition, this method can adapt to isolated and overlapped seismic signals from the complex layers in the inhomogeneous viscoelastic medium. The viability of the method is verified by synthetic and real data sets.
Key wordsadaptive molecular decomposition   absorption   compensation   resolution   
收稿日期: 2009-04-18;
基金资助:

本研究由国家863计划项目(2006A09A102)、国家自然科学基金重点项目(40730424)和国家科技重大专项(2008ZX05023005005)资助。

引用本文:   
汪玲玲,高静怀,张明. 一种基于自适应分子分解的地层吸收补偿方法[J]. 应用地球物理, 2010, 7(1): 74-87.
WANG Ling-Ling,GAO Jing-Huai,ZHANG Ming. A method for absorption compensation based on adaptive molecular decomposition[J]. APPLIED GEOPHYSICS, 2010, 7(1): 74-87.
 
[1] Aki, K., and Richards, P. G., 2002, Quantitative seismology (second edition): University Science Books, Sausalito, USA.
[2] AlBinHassan, N. M., Luo, Y., and Al-Faraj, M. N., 2006, 3D edge-preserving smoothing and applications: Geophysics, 71(4), 5 - 11.
[3] Bai, H,, and Li, K. P., 1999, Stratigraphic absorption compensation based on time-frequency analysis: Oil Geophysical Prospecting (in Chinese), 34(6), 642-648.
[4] Cohen, L., 1995, Time-frequency analysis: Prentice-Hall.
[5] Gao, J. H., Wang, L. L., and Zhao, W., 2009, Enhancing resolution of seismic traces based on the changing wavelet model of seismograms: Chinese Journal of Geophysics, 52(3), 625 - 640.
[6] Gu, H. M., Wang J.Y., and Zhu G.M., 2002, Multiwave Amplitude Compensation and Its Sensitivity Analysis to AVO Inversion in Viscoelastic Media: Journal of China University of Geosciences, 13(1), 86 - 90.
[7] Grossman, J. P., Margrave, G. F., and Lamoureux, M. P., 2002, Constructing adaptive, nonuniform Gabor frames from partitions of unity: CREWES Research Report, 14, 1 - 9.
[8] Grossman, J. P., 2005, Theory of adaptive, nonstationary filtering in the Gabor domain with applications to seismic inversion: PhD Dissertation, Department of Geology and Geophysics and Department of Mathematics and Statistics, University of Calgary.
[9] Li, K. P., Li, Y. D., and Zhang, X. G., 2000, A method to compensate earth filtering based on wavelet packet: Chinese J. Geophys. (in Chinese), 43(4), 543 - 549.
[10] Liu, X. W., Nian, J. B., and Liu, H., 2007, Generalized S-transform based compensation for stratigraphic absorption of seismic attenuation: Geophysical Prospecting for Petroleum (in Chinese), 22(4), 1147 - 1152.
[11] Margrave, G. F., and Lamoureux, M. P., 2001, Gabor deconvolution: CREWES Research Report, 13, 241 - 276, 252 - 253.
[12] Margrave, G. F., Henley, D. C., Lamoureux, M. P., Iliescu, V., and Grossman, J. P., 2002, An update on Gabor deconvolution: CREWES Research Report, 14, 1 - 27.
[13] Margrave, G. F., Lamoureux, M. P., Grossman, J. P., and Iliescu, V., 2002, Gabor deconvolution of seismic data for source waveform and Q correction: 72th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2190 - 2193.
[14] Margrave, G. F., Gibson, P. C., Grossman, J. P., Henley, D. C.,Iliescu, V., and Lamoureux,M. P., 2005, The Gabor transform, pseudodifferential operators, and seismic deconvolution: Integrated Computer-Aided Engineering, 12, 43 - 45.
[15] Matheney, M. P., and Nowack, R. L., 1995, Seismic attenuation values obtained from instantaneous-frequency matching and spectral ratios: Geophys. J. Int., 123, 1 - 15.
[16] Samec, P., and Blangy, J. P., 1992, Viscoelastic attenuation, anisotropy, and AVO: Geophysics, 57(3), 441 - 450.
[17] Qian, S., and Chen, D. P., 1993, Discrete Gabor transform: IEEE Transactions on Signal Processing, 41(7), 2429 - 2438.
[18] Yilmaz, O., 2001, Seismic data processing, Volume 2: Soc. of Expl. Geophys., Tulsa, USA.
[19] Wang, Y. H., 2006, Inverse Q-filter for seismic resolution enhancement: Geophysics, 71(3), 51 - 60.
[20] Yi, X., Xin, K. F., Sun, J., and Notfors, 2009, C., 3D prestack depth migration with compensation for frequency dependent absorption and dispersion: 79th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts.
[21] Zhang, X. D., and Bao, Z., 2001, Analysis and processing of nonstationary signal: Beijing National Defense Industry Press, Beijing.
[1] 王德营,孔雪,董烈乾,陈立华,王永军,王晓晨. 一种非白噪反射系数序列的预测反褶积方法*[J]. 应用地球物理, 2019, 16(1): 109-123.
[2] 武绍江,王一博,马玥,常旭. 基于L0范数的超高分辨率最小二乘叠前Kirchhoff深度偏移[J]. 应用地球物理, 2018, 15(1): 69-77.
[3] 姬战怀,严胜刚. 改进的Gabor小波变换的特性在地震信号处理和解释中的应用[J]. 应用地球物理, 2017, 14(4): 529-542.
[4] 王德营,黄建平,孔雪,李振春,王姣. 基于时频二次谱的提高地震资料分辨率方法[J]. 应用地球物理, 2017, 14(2): 236-246.
[5] 张华,贺振华,李亚林,李瑞,何光明,李忠. 频域谱反演提高转换波薄层分辨率方法研究与应用[J]. 应用地球物理, 2017, 14(2): 247-257.
[6] 田雨,徐洪,张兴阳,王红军,郭同翠,张良杰,龚幸林. 基于图论多分辨率聚类分析的测井岩相识别研究——以阿姆河盆地台内滩气田为例[J]. 应用地球物理, 2016, 13(4): 598-607.
[7] 陈波,贾晓峰,谢小碧. 基于染色算法的宽频带地震照明及分辨率分析[J]. 应用地球物理, 2016, 13(3): 480-490.
[8] 车小花,乔文孝,鞠晓东,王瑞甲. 基于相控圆弧阵的方位声波固井质量评价:数值模拟与现场测试[J]. 应用地球物理, 2016, 13(1): 194-202.
[9] 宋建国, 宫云良, 李珊. 斜缆数据频率域高分辨率Radon变换与虚反射消除方法[J]. 应用地球物理, 2015, 12(4): 564-572.
[10] 吴娟, 陈小宏, 白敏, 刘国昌. 基于吸收衰减补偿的多分量高斯束叠前深度偏移[J]. 应用地球物理, 2015, 12(2): 157-168.
[11] 王雄文, 王华忠. 稀疏时频分解方法的研究与运用[J]. 应用地球物理, 2014, 11(4): 447-458.
[12] 周怀来, 王峻, 王明春, 沈铭成, 张昕锟, 梁平. 基于广义S变换的地震资料振幅谱补偿和相位谱校正方法研究[J]. 应用地球物理, 2014, 11(4): 468-478.
[13] 李志娜, 李振春, 王鹏, 徐强. λ-f域高分辨率Radon变换多次波压制方法研究[J]. 应用地球物理, 2013, 10(4): 433-441.
[14] 李芳, 王守东, 陈小宏, 刘国昌, 郑强. 径向道域变步长采样叠前非稳态反褶积处理方法研究[J]. 应用地球物理, 2013, 10(4): 423-432.
[15] 李国发, 秦德海, 彭更新, 岳英, 翟桐立. 稀疏约束反褶积方法实验分析与应用研究[J]. 应用地球物理, 2013, 10(2): 191-200.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司