APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2010, Vol. 6 Issue (1): 66-73    DOI: 10.1007/s11770-010-0007-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
不规则界面介质中首播的传播路径
周红1,陈晓非2
1. 中国地震局地球物理研究所,北京 100081
2. 中国科技大学地球与空间科学学院,合肥 230026
Ray path of head waves with irregular interfaces
Zhou Hong1 and Chen Xiao-fei2
1. Institute of Geophysics, China Earthquake Administration, Beijing 100081, China.
2. School of Earth and Space Science, University of Science and Technology, Hefei 230026, China.
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 通常首波被认为是以下层高速度沿着平坦界面传播的折射波。然而,沿着不规则界面首播的传播路径至今仍不明确。在这里,我们将利用重叠单元(SEMO)方法以模拟的方式来研究这个问题。之所以选择重叠单元(SEMO)方法,是因为这种方法可以准确地计算出沿不规则界面传播的界面波。然后我们利用时间窗将首播从界面波中分离出来,并分析首播沿不规则界面传播进程中能量的变化和走时的变化。分析结果表明,与平坦的界面上首播的传播情况不同,沿不规则界面传播的首播由两种机制产生:折射机制和透射机制,也就是说,首播可能是沿界面传播的折射波或高速介质中向低速介质的透射波。关于首播的这种认识将有助于我们建设更加精确的首播反演方法,例如建立更为精确的首波旅行时层析成像,并由此获得更准确的地下结构模型,这对于研究认识一些特殊地区(如青藏高原)的形成机制是非常重要的。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
周红
陈晓非
关键词首波   不规则界面   折射波   投射波   射线路径     
Abstract: Head waves are usually considered to be the refracted waves propagating along flat interfaces with an underlying higher velocity. However, the path that the rays travel along in media with irregular interfaces is not clear. Here we study the problem by simulation using a new approach of the spectral-element method with some overlapped elements (SEMO) that can accurately evaluate waves traveling along an irregular interface. Consequently, the head waves are separated from interface waves by a time window. Thus, their energy and arrival time changes can be analyzed independently. These analyses demonstrate that, contrary to the case for head waves propagating along a flat interface, there are two mechanisms for head waves traveling along an irregular interface: a refraction mechanism and transmission mechanism. That is, the head waves may be refracted waves propagating along the interface or transmitted waves induced by the waves propagating in the higher-velocity media. Such knowledge will be helpful in constructing a more accurate inversion method, such as head wave travel-time tomography, and in obtaining a more accurate model of subsurface structure which is very important for understanding the formation mechanism of some special areas, such as the Tibetan Plateau.
Key wordshead waves')" href="#">

head waves   irregular interface   refracted waves   transmitted waves   ray path   

收稿日期: 2009-11-24;
引用本文:   
周红,陈晓非. 不规则界面介质中首播的传播路径[J]. 应用地球物理, 2010, 6(1): 66-73.
ZHOU Hong,CHEN Xiao-Fei. Ray path of head waves with irregular interfaces[J]. APPLIED GEOPHYSICS, 2010, 6(1): 66-73.
 
[1] Aki, K., and Richards, P. G., 2002, Quantitative seismology: University Science Books, Sausalito, California.
[2] Al-Lazki, A. I., Sandvol, E., Seber, D., Barazangi, M., Turkelli, N., and Mohamad, R., 2004, Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian, Eurasian and African plates: Geophys. J. Int., 158(3), 1024 - 1040.
[3] Arvidsson, R., Boutet, T., and Kulhanek, O., 2002, Foreshocks and aftershocks of the M-W=7.1, 1992, earthquake in the Atrato region, Colombia; J. Seismol.­, 6(1), 1 - 11.
[4] Bennett, G., 1999, 3D seismic refraction for deep exploration targets: The Leading Edge, 18, 186 - 191.
[5] Cerveny, V., and Ravindra, R., 1971, Theory of seismic head waves: University of Toronto Press, Toronto.
[6] Domzalski, W., 1956, Some problems of shallow seismic refraction investigations: Geophys. Prosp. 4, 140 - 166.
[7] Hearn, T., 1996, Anisotropic Pn tomography in the western United States: J. Geophys. Res., 101(B4), 8403 - 8414.
[8] Hearn, T., 1999, Uppermost mantle velocities and anisotropy beneath Europe: J. Geophys. Res., 104(B7), 15123 - 15139.
[9] Hearn, T., Beghoul, N., and Barazangi, M., 1991, Tomography of the western United States from regional arrival times: J. Geophys. Res., 96(B10), 16369 - 16381.
[10] Hearn, T., Rosca, A., and Fehler, M., 1994, Pn Tomography beneath the southern great-basin: Geophys. Res. Lett., 21(20), 2187 - 2190.
[11] He, Y. F., Zhao K. C., Zhang, X. B., Chen, X. F., and Jin, P., 2006, Pn geometric spreading in the upper mantle with linear velocity gradient: Prog. in Geophys, 21(4), 1093 - 1098.
[12] Hill, D., 1972, Velocity gradients and anelasticity from crustal body wave amplitudes: J. Geophys. Res, 76, 3309 - 3325.
[13] Lanz, E., Maurer, H., and Green, A. G., 1998, Refraction tomography over a buried waste disposal site: Geophysics, 63, 1414 - 1433.
[14] Lay, T., and Wallace, T. C., 1995, Modern global seismology: Vol. 58: Internat. Geophys. Ser., Academic Press, San Diego, Calif.
[15] Liang, C., Song, X., and Huang, J., 2004, Tomographic inversion of Pn travel times in China: J. Geophys. Res., 109, B11304, doi:10.1029/2003JB002789.
[16] Palmer, D., 2006, Refraction traveltime and amplitude corrections for very near-surface inhomogeneities: Geophys. Prosp., 54(5), 589 - 604.
[17] Pei, S. P., Xu, Z. H., and Wang, S. Y., 2004, Sn wave tomography in the uppermost mantle beneath the China continent and adjacent regions: Chinese J Geophys., 47(2), 250 - 256.
[18] Sachpazi, M., Galvé, A., Laigle, A. M., Hirn, E., Sokos, A. Serpetsidaki, J.-M., Marthelot, J. M., Alperin, P., Zelt, B., and Taylor, B., 2007, Moho topography under central Greece and its compensation by Pn time-terms for the accurate location of hypocenters: The example of the Gulf of Corinth 1995 Aigion earthquake: Tectonophysics, 440, 53 - 65.
[19] Sereno, J., 1989, Numerical modeling of Pn geometric spreading and empirically determined attenuation of Pn and Lg phase recorded in eastern Kazakhstan (Report): Science Applications International Corporation, San Diego, California.
[20] Xie, J., 2007, Pn attenuation beneath the Tibetan Plateau, Bull. Seism. Soc. Am., 97(6), 2040 - 2052.
[21] Yang, X. P., Bondár, I. , Bhattacharyya, J., Ritzwoller, M., Shapiro, N., Antolik, M., Ekström, G., Israelsson, H., and McLaughlin, K., 2004, Validation of regional and teleseismic travel-time models by relocating ground-truth events: Bull. Seism. Soc. Am., 94(3), 897 - 919.
[22] Zhang, J., Zhang, H., and Chen, X. F., 2002, Characteristics of head wave in multiple layered half space: Acta Seismol.­ Sin., 24(6), 559 - 568.
[23] Zhang, Z., Shen, Y. and Zhao, L., 2007, Finite-frequency sensitivity kernels for head waves: Geophys. J. Int., 171(3), 847 - 856.
[24] Zhou, H., and Chen, X. F., 2010, A new technique to synthesize seismography with more flexibility: Legend Spectral-Element method with overlapped elements: Pure Appl. Geophys. DOI: 10.1007/s00024-010-0106-0.
[1] 韩复兴, 孙建国, 王坤. 海水速度变化对地震波走时、射线路径及振幅的影响[J]. 应用地球物理, 2012, 9(3): 319-325.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司