APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2010, Vol. 7 Issue (4): 348-356    DOI: 10.1007/s11770-010-0263-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
三角网波行面扩展最小走时射线追踪全局算法
于师建1,刘润泽2,程久龙3
1. 山东科技大学矿山灾害预防与控制重点实验室,青岛 266510
2. 长江工程地球物理勘测武汉有限公司,武汉 430010
3. 中国矿业大学煤炭资源与安全开采国家重点实验室,北京 100083
A minimum traveltime ray tracing global algorithm on a triangular net for propagating plane waves
Yu Shi-Jian1, Liu Run-Ze2, and Cheng Jiu-Long3
1. Key Laboratory of Mine Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao 266510, China.
2. Wuhan Changjiang Engineering Geophysical Exploration Co., Wuhan 430010, China.
3. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China).
 全文: PDF (792 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 针对矩形网射线追踪存在的模型剖分灵活性差、速度界面描述精度差等问题,研究了复杂结构三角网最小走时射线追踪全局算法。(1)根据剖分区域点、线、面的结构关系,遵循Delaunay三角剖分的优化准则进行三角网格剖分;(2)定义三角单元射线追踪的拓扑关系;(3)波源点及某一时刻波到达的每一个节点点构成波行面,在波行面扩展过程中计算节点的最小走时和次级源位置,实际次级源检索采用双曲线近似算法;(4)利用各节点走时和次级源方向信息,通过最小走时搜索,拾取从接收点到源点的射线路径。数值模拟结果表明,三角网射线追踪方法模型剖分时灵活性强、速度间断面的描述精度高,追踪结果准确。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
于师建
刘润泽
程久龙
关键词三角网   射线追踪   波行面   次级源     
Abstract: To address the problem of subdividing inflexible rectangular grid models and their poor definition of velocity interfaces, we propose a complex structure triangular net for a minimum traveltime ray tracing global algorithm. Our procedure is: (1) Subdivide a triangle grid based on the Delaunay triangular subdivision criterion and the relationships of the points, lines, and the surfaces in the subdividing area. (2) Define the topology relationships and related concepts of triangular unit ray tracing. (3) The source point and wave arrival points at any time compose the propagating plane wave and the minimum traveltime and secondary source positions are calculated during the plane wave propagation. We adopt the hyperbolic approximation global algorithm for secondary source retrieving. (4) By minimum traveltime ray tracing, collect the path from receiver to source points with the neighborhood point’s traveltime and the direction of the secondary source. Numerical simulation examples are given to test the algorithm. The results show that the triangular net ray tracing method demonstrates model subdivision flexibility, precise velocity discontinuity interfaces, and accurate computations.
Key wordstriangular net   ray tracing   plane wave propagation   secondary source   
收稿日期: 2009-09-01;
基金资助:

本研究由国家自然科学基金(批准号:50974081,50774051,51034003)、中国优秀博士论文基金(批准号:200958)、长江学者和高校创新团队项目(批准号:IRT0843)和中国矿业大学(北京)煤炭资源和安全开采国家重点实验室开放研究基金项目(批准号:2007-07)资助。

引用本文:   
于师建,刘润泽,程久龙. 三角网波行面扩展最小走时射线追踪全局算法[J]. 应用地球物理, 2010, 7(4): 348-356.
YU Shi-Jian,LIU Run-Ze,CHENG Jiu-Long. A minimum traveltime ray tracing global algorithm on a triangular net for propagating plane waves[J]. APPLIED GEOPHYSICS, 2010, 7(4): 348-356.
 
[1] Cao, S, and Greenhalgh, S., 1993, Calculation of the seismic first-break time field and its ray path distribution using a minimum traveltime tree algorithm: Geohys. J. Int, 114(3), 593 - 600.
[2] Gao, E. G., Xu, G. M., Li, G. P., Tu, S. J., and Zhao, Y., 2002, A new total iterative tracing method in random interfaces: Acta Acustica (in Chinese), 27(3), 282 - 287.
[3] Julian, B.R., and Gubbins, D., 1977, Three-dimensional seismic ray tracing: J. Geophys, 43, 95 - 114.
[4] Klimes, L., and Kvasnicha, M., 1994, 3-D network ray tracing: Geophys. J. Int., 116, 726 - 738.
[5] Liu, H., Meng, F. L., and Li, Y. M., 1995, The interface grid method for seeking global minimum travel-time and the correspondent ray path: Chinese Journal of Geophysics (in Chinese), 38(6), 823 - 832.
[6] Moser, T. J., 1991, Shortest path calculation of seismic ray: Geophysics, 56(1), 59 - 67.
[7] Um, J., and Thurber, C., 1987, A fast algorithm for two-points seismic ray tracing: Bull. Seis. Soc. Am, 79, 972 - 986.
[8] van Trier, J., and Symes, W. W, 1991, Upwind finite-difference calculation of travel times: Geophysics, 56, 812 - 821.
[9] Vidale, J. E., 1988, Finite-difference calculation of travel times: Bull. Seis. Soc. Am., 78, 2062 - 2076.
[10] Vidale, J. E., 1990, Finite-difference calculation of traveltimes in three dimensions: Geophysics, 55, 521 - 526.
[11] Wang, H., and Chang, X., 2000, 3-D ray tracing method based on graphic structure: Chinese Journal of Geophysics (in Chinese), 43(4), 534 - 541.
[12] Xu, T., Xu, G. M., Gao, E. G., Zhu, L. B., and Jiang, X. Y., 2004, Block modeling and shooting ray tracing in complex 3-D media: Chinese J. Geophys. (in Chinese), 47(6), 1118 - 1126.
[13] Xu, T., Zhang, Z., Zhao, A., Zhang, X., Zhang, H., 2008, Sub-triangle shooting ray tracing in complex 3D VTI media: Journal of Seismic Exploration, 17, 131 - 144.
[14] Zhang, J. Z., Chen, S. J., and Xu, C. W., 2004, A method of shortest path raytracing with dynamic networks: Chinese J. Geophysics (in Chinese), 47(5), 899 - 904.
[15] Zhang, M. G., Jia, Y. G., Wang, M. Y., and Li, X, F., 2006, A global minimum traveltime raytracing algorithm of wavefront expanding with interface points as secondary sources: Chinese J. Geophys. (in Chinese), 49(4), 1169 - 1175.
[16] Zhao, A. H., Zhang, Z. J., and Teng, J. W., 2004, Minimum travel time tree algorithm for seismic ray tracing: improvement in efficiency: Journal of Geophysics and Engineering, 1(4), 245 - 251.
[17] Zhao, R., and Bai, C.Y., 2010, Fast multiple ray tracing within complex layered media: The shortest path method based on irregular grid cells: Acta Seismologica Sinica, 32(4), 433 - 444.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司