Seismic wave propagation in Kelvin visco-elastic VTI media
Lu Jun1 and Wang Yun2
1. School of Energy Resources, China University of Geosciences, Beijing 100083, China.
2. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China.
Abstract:
In this article, under the assumption of weak anisotropy and weak attenuation, we present approximate solutions of anisotropic complex velocities and quality-factors for Kelvin visco-elastic transverse isotropy (KEL-VTI) media, based on the complex physical parameter matrix. Also, combined with the KEL-VTI media model, the propagation characteristics of the qP-, qSV-, and qSH-wave phases and energies are discussed. Further, we build a typical KEL-VTI media model of the Huainan coal mine to model the wave propagation. The numerical simulation results show that the PP- and PSV-wave theoretical wave-fields are close to the wave-fields of three-component P- and converted-waves acquired in the work area. This result proves that the KEL-VTI media model gives a good approximation to this typical coalfield seismic-geologic conditions and is helpful to the study of attenuation compensation of multi-component seismic data.
LU Jun,WANG Bin. Seismic wave propagation in Kelvin visco-elastic VTI media[J]. APPLIED GEOPHYSICS, 2010, 7(4): 357-364.
[1]
Banik, N. C., 1987, An effective anisotropy parameter in transversely isotropic media: Geophysics, 52(12), 1654 - 1664.
[2]
Carcione, J. M., 1990, Wave propagation in anisotropic linear viscoelastic media: Theory and simulated wavefield: Geophys. J. Int., 101, 739 - 750.
[3]
Carcione, J. M., 1995, Constitutive model and wave equations for linear, viscoelastic, anisotropic media: Geophysics, 60(2), 537 - 548.
[4]
Carcione, J. M., 2007, Wave fields in real media: Wave propagation in anisotropic, anelastic, porous and electromagnetic media: 2nd Ed., Elsevier Science.
[5]
Cerveny, V., and Psencik, I., 2005, Plane waves in viscoelastic anisotropic media - I: Theory: Geophys. J. Int., 161(1), 197 - 212.
[6]
Cerveny, V., and Psencik, I., 2008, Quality factor Q in dissipative anisotropic media: Geophysics, 73(4), T63 - T75.
[7]
Crampin, S., 1981, A review of wave motion in anisotropic and cracked elastic -media: Wave Motion, 3, 343 - 391.
[8]
Hosten, B., Deschamps, M., and Tittmann, B. R., 1987, Inhomogeneous wave generation and propagating in lossy anisotropic solids: Application to the characterization of viscoelastic composite materials: J. Acoust. Soc. Am., 82, 1763 - 1770.
[9]
Hudson, J. A., 1982, Over all properties of a cracked solid: Math. Proc. Camb. Phil. Soc., 88, 371 - 384.
[10]
Lamb, J., and Richter, J., 1966, Anisotropic acoustic attenuation with new measurements for quartz at room temperature: Proc. Roy. Soc. London, Ser. A, 293, 479 - 492.
[11]
Lu, J., Wang, Y., and Shi, Y., 2006, The best receiving window for acquisition of multicomponent converted seismic data in VTI media: Chinese J. Geophys. (in Chinese), 49(1), 234 - 243.
[12]
Lucet, N., and Zinszner, B., 1992, Effects of heterogeneities and anisotropy on sonic and ultrasonic attenuation in rocks: Geophysics, 57(8), 1018 - 1026.
[13]
Niu, B. H., and Sun, C. Y., 2007, Viscoelastic medium and seismic wave propagation, half-space homogeneous isotropic: Geological Publishing House, Beijing.
[14]
Sheriff, R. E., 1995, Exploration seismology (second edition): Cambridge University Press, 181 - 183.
[15]
Taner, M. T., and Coburn, K., 1981, Surface-consistent deconvolution: 51st Ann. Internat. Mtg., Soc. Expl. Geophys.
Wang, Y., Lu, J., and Shi, Y., et.al, 2009, PS-wave Q estimation based on the P-wave Q values: J. Geophys. Eng., 6, 386 - 389.
[18]
Zhang, Z. J., Teng, J. W., and He, Z. H., 1999, The study of seismic wave azimuthal anisotropic character of velocity attenuation, and quality factor in EDA media: Science China (E edition), 29(6), 569 - 574.
[19]
Zhu, Y., and Tsvankin, I., 2006, Plane-wave propagation in attenuative transversely isotropic media: Geophysics, 71(2), T17 - T30.