APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2010, Vol. 7 Issue (3): 229-238    DOI: 10.1007/s11770-010-0246-5
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于POCS方法指数阈值模型的不规则地震数据重建
高建军1,2,陈小宏1,2,李景叶1,2,刘国昌1,2,马剑3
1. 中国石油大学油气资源与探测国家重点实验室,北京 102249
2. 中国石油大学CNPC物探重点实验室,北京 102249
3. 中国石油大学(北京)地球科学学院,北京 102249
Irregular seismic data reconstruction based on exponential threshold model of POCS method
Gao Jian-Jun1,2, Chen Xiao-Hong1,2, Li Jing-Ye1,2, Liu Guo-Chang1,2, and Ma Jian3
1. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, China.
2. CNPC Key Lab of Geophysical Exploration, China University of Petroleum, Beijing 102249, China. 
3. College of Geosciences, China University of Petroleum, Beijing 102249, China.
 全文: PDF (3876 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 不规则地震数据会对地震多道处理技术的正确运行造成不良影响,降低地震资料的处理质量。本文将广泛用于图形图像重建的凸集投影(Project onto convex sets, POCS)方法应用到地震数据重建领域,实现规则样不规则道缺失数据的插值重建。对于整道缺失地震数据,将POCS迭代重建过程由时间域转移到频率域实现,避免每次迭代都对时间做正反Fourier变换,节约了计算量。在迭代过程中,阈值参数的选择方式对重建效率有重要影响。本文设计了两种阈值集合模型进行重建试验,试验结果表明:在相同重建效果下,指数型阈值集合模型可以有效减少迭代次数,提高重建效率。此外,分析了POCS重建方法的抗噪性能和抗假频性能。最后,理论模型和实际资料处理效果验证了本文重建方法的正确性和有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
高建军
陈小宏
李景叶
刘国昌
马剑
关键词不规则地震数据   地震数据影   阈值模型     
Abstract: Irregular seismic data causes problems with multi-trace processing algorithms and degrades processing quality. We introduce the Projection onto Convex Sets (POCS) based image restoration method into the seismic data reconstruction field to interpolate irregularly missing traces. For entire dead traces, we transfer the POCS iteration reconstruction process from the time to frequency domain to save computational cost because forward and reverse Fourier time transforms are not needed. In each iteration, the selection threshold parameter is important for reconstruction efficiency. In this paper, we designed two types of threshold models to reconstruct irregularly missing seismic data. The experimental results show that an exponential threshold can greatly reduce iterations and improve reconstruction efficiency compared to a linear threshold for the same reconstruction result. We also analyze the anti-noise and anti-alias ability of the POCS reconstruction method. Finally, theoretical model tests and real data examples indicate that the proposed method is efficient and applicable.
Key wordsIrregular missing traces   seismic data reconstruction   POCS   threshold model   
收稿日期: 2010-05-15;
基金资助:

本研究由国家高技术研究发展计划(863计划)(2006AA09A102-09)和国家科技重大专项课题(2008ZX05025- 001-001)资助。

引用本文:   
高建军,陈小宏,李景叶等. 基于POCS方法指数阈值模型的不规则地震数据重建[J]. 应用地球物理, 2010, 7(3): 229-238.
GAO Jian-Jun,CHEN Xiao-Hong,LI Jing-Ye et al. Irregular seismic data reconstruction based on exponential threshold model of POCS method[J]. APPLIED GEOPHYSICS, 2010, 7(3): 229-238.
 
[1] Abma, R., 2005, Issues in multi-dimensional interpolation: 75th Ann. Internal. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 2150 - 2154.
[2] Abma, R., and Kabir, N., 2006, 3D interpolation of irregular data with a POCS algorithm: Geophysics, 71(6), E91 - E97.
[3] Bregman, L.,1965,The method of successive projection for finding a common point of convex sets: Soviet Math, 6(3), 688 - 692.
[4] Chemingui, N., and Biondi, B., 2002, Seismic data reconstruction by inversion to common offset: Geophysics, 67(5), 1575 - 1585.
[5] Duijndam¤, A. J. W., Schonewille¤,M. A., and Hindriks, C. O. H. 1999, Reconstruction of band-limited signals, irregularly sampled along one spatial direction: Geophysics, 64(2), 524 - 538.
[6] Fomel, S., 2003, Seismic reflection data interpolation with differential offset and shot continuation: Geophysics, 68(2), 733 - 744.
[7] Galloway, E., and Sacchi, M., 2007, POCS method for seismic data reconstruction of irregularly sampled data: In Abstract of 2007-CSPG CSEG Conference, Calgary, Canada, 555.
[8] Gao, J. J., Chen, X. H., Li, J. Y., Liu, Z. P., and Zhang, N. N., 2009, Study on reconstruction of seismic data based on non-uniform Fourier transform: Progress in Geophys. (in Chinese), 24(5), 1741 - 1747.
[9] Guo, J. Y., Zhou, X. Y., and Yu, S. P., 1996, Iso-interval trace interpolation in F-X domain: OGP, 31(1), 28 - 34.
[10] Hindriks, H., and Duijndam, W., 2000, Reconstruction of 3D seismic signals irregularly sampled along two coordinates: Geophysics, 65(1), 253 - 263.
[11] Liu, B., and Sacchi, M., 2004, Minimum weighted norm interpolation of seismic records: Geophysics, 69(6), 1560 - 1568.
[12] Meng , X. H., Guo , L. H., Zhang, Z. F., Li, S. L., and Zhou, J. J., 2008, Reconstruction of seismic data with least squares inversion based on non-uniform fast Fourier transform: Chinese J. Geophys. (in Chinese), 51(1), 235 - 241.
[13] Naghizadeh, M., and Sacchi, M., 2007, Multi-step auto-regressive reconstruction of seismic records: Geophysics, 72(6), V111 - V118.
[14] Naghizadeh, M., and Sacchi, M., 2009, F‐x adaptive seismic‐trace interpolation: Geophysics, 74(1), V9 - V16.
[15] Ozkan, M., Tekalp, M., and Sezan, M., 1994, POCS-based restoration of space-varying blurred images: IEEE Transactions on Image Processing, 3(4), 450 - 454.
[16] Patti, A., Sezan, M., and Tekalp, A., 1997, Superresolution video reconstruction with arbitrary sampling lattices and nonzereo aperture time: IEEE Transactions on Image Processing, 6(8), 1064 - 1076.
[17] Porsani, M., 1999, Seismic trace interpolation using half-step prediction filters: Geophysics, 64(5), 1461 - 1467.
[18] Ronen, J., 1987, Wave equation trace interpolation: Geophysics, 52(7), 973 - 984.
[19] Spitz, S., 1991, Seismic trace interpolation in the f-x domain: Geophysics, 56(6), 785 - 794.
[20] Stark, H., and Oskoui, P., 1989, High resolution image recovery from image plane arrays using Convex Projections: Journal of the Optical Society of American, 6(11), 1715 - 1726.
[21] Tekalp, A., Ozkan, M., and Sezan, M., 1992, High-resolution image reconstruction from lower-resolution image sequences and space-varying image restoration: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-92, 3, 169 - 172.
[22] Xu, S., Zhang, Y., Pham, D., and Lambare, G., 2005, Anti-leakage Fourier transform for seismic data regularization: Geophysics, 70(4), V87 - V95.
[23] Youla, C., and Webb, H., 1982, Image restoration by the method of convex projections: part 1 theory: IEEE Trans Med Imaging, 1(2), 81 - 94.
[24] Yu, Y. L., Xie, S. L., and Cai, H. T., 2004, Introduction of new method of signal processing: Tinghua University Press, China, 79 - 81.
[25] Zhou, X. Y., 1997, Seismic trace interpolation in F-X domain: Oil and Geophysical Prospecting, 32(2), 154 - 162.
[26] Zwartjes, M., and Gisolf, A., 2007, Fourier reconstruction with sparse inversion: Geophys. Prosp., 55(2), 199 - 221.
[1] 李闯,黄建平,李振春,王蓉蓉. 基于奇异值谱约束的叠前平面波最小二乘逆时偏移方法[J]. 应用地球物理, 2017, 14(1): 73-86.
[2] 葛子建, 李景叶, 潘树林, 陈小宏. 一种快速收敛的抗噪POCS地震数据重构方法[J]. 应用地球物理, 2015, 12(2): 169-178.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司