APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2010, Vol. 7 Issue (3): 239-248    DOI: 10.1007/s11770-010-0250-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
起伏地表无反射递推算法叠后逆时偏移
张敏1,李振春1,张华2,孙小东1
1. 中国石油大学(华东)地球资源与信息学院,山东东营 257061
2. 四川石油管理局,四川成都 610051
Poststack reverse-time migration using a non-reflecting recursive algorithm on surface relief
Zhang Min1, Li Zhen-Chun1, Zhang Hua2, and Sun Xiao-Dong1
1. College of Geo-Resource and Information, China University of Petroleum (East China), Dongying 257061, China.
2. Sichuan Petroleum Administrative Bureau, Chengdu 610051, China.
 全文: PDF (2228 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 目前研究基于起伏地表、复杂构造和速度复杂等条件的地震精确成像方法有重要意义。逆时偏移是一种高精度的偏移成像方法。文中在声波方程中引入波阻抗函数得到一种新的无反射递推算法,并通过坐标变换原理推导出起伏地表条件下的算法,利用爆炸反射面逆时偏移原理和零时间叠后逆时偏移成像条件,实现了复杂条件下的叠后数值模拟及逆时偏移。理论模型和实际资料的计算说明该方法不仅能有效压制层间反射波,并能处理起伏地表条件下的地震成像问题,证明本方法有较强适应性和实用性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张敏
李振春
张华
孙小东
关键词起伏地表   无反射递推   波阻抗   坐标变换   数值模拟   逆时偏移     
Abstract: Presently the research based on the accurate seismic imaging methods for surface relief, complex structure, and complicated velocity distributions is of great significance. Reverse-time migration is considered to be one of highly accurate methods. In this paper, we propose a new non-reflecting recursive algorithm for reverse-time migration by introducing the wave impedance function into the acoustic wave equation and the algorithm for the surface relief case is derived from the coordinate transformation principle. Using the exploding reflector principle and the zero-time imaging condition of poststack reverse-time migration, poststack numerical simulation and reverse-time migration with complex conditions can be realized. The results of synthetic and real data calculations show that the method effectively suppresses unwanted internal reflections and also deals with the seismic imaging problems resulting from surface relief. So, we prove that this method has strong adaptability and practicality.
Key wordssurface relief   non-ref1ecting recursive algorithm   wave impedance   coordinate transformation   numerical simulation   reverse-time migration   
收稿日期: 2010-04-02;
基金资助:

本研究由国家自然科学基金(40974073)、国家863课题(2007AA060504)、国家973课题(2007CB209605)和CNPC物探重点实验室资助。

引用本文:   
张敏,李振春,张华等. 起伏地表无反射递推算法叠后逆时偏移[J]. 应用地球物理, 2010, 7(3): 239-248.
ZHANG Min,LI Zhen-Chun,ZHANG Hua et al. Poststack reverse-time migration using a non-reflecting recursive algorithm on surface relief[J]. APPLIED GEOPHYSICS, 2010, 7(3): 239-248.
 
[1] Baysal, E., Kosloff, D. D, and Sherwood, J. W. C., 19 84, A two-way nonreflecting wave equation: Geophysics, 49(2), 132 - 141.
[2] Dong, Y., Yang, H. Z., and Du, Q. Z., 2003, Study on reverse-time migration of two-dimensional wave equation with finite element-finite difference method: Journal of China University of Petroleum (Edition of Natural Science), 27(6), 25 - 29.
[3] Farmer, P. A., Jones, I. F., Zhou, H., Bloor, R. I., and Goodwin, M. C., 2006, Application of reverse time migration to complex imaging problems: First Break, 24, 65 - 73.
[4] Fletcher, R. P., Fowler, P. J., Kitchenside, P., and Albertin, U., 2005, Suppressing artifacts in prestack reverse time migration: 75th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2049 - 2051.
[5] Fowler, P. J.., Du, X., and Fletcher, R. P., 2010, Coupled equations for reverse time migration in transversely isotropic media: Geophysics, 75(1), 11 - 22.
[6] Gazdag, J., and Carrizo,E., 1986, On reverse-time migration: Geophysical Prospecting, 34(6), 822 - 832.
[7] Guan, H., Li, Z., Wang, B., and Kim, Y., 2008, A multi-step approach for efficient reverse-time migration: 78th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2341 - 2345.
[8] Guitton, A., Kaelin, B., and Biondi, B., 2007, Least-squares attenuation of reverse-time-migration artifacts: Geophysics, 72(1), 519 - 523.
[9] Haney, M. M., Bartel, L. C., Aldridge, D. F., and Symons, N. P., 2005, Insight into the output of reverse-time migration. What do amplitudes mean?: 75th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1950 - 1953.
[10] Hestholm, S, 2003, Elastic wave modeling with free surfaces: Stability of long simulations: Geophysics, 68(1), 314 - 321.
[11] Hestholm, S., and Ruud, B., 1994, 2D finite-difference elastic wave modeling including surface topography: Geophysics Prospecting, 42(5), 371 - 390.
[12] Hayashi, K., and Burns, D. B., 1999, Variable grid finite-difference modeling including surface topography: 69th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 528 - 531.
[13] Nielsen, P., and Skovgaard, O., 1994, Using the pseudo spectral technique on curved grids for 2D acoustic forward modeling: Geophysical Prospecting, 42(3), 321 - 342.
[14] Valenciano, A., and Biondi, B., 2003, 2D deconvolution imaging condition for shot-profile migration: 73th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2431 - 2433.
[15] Vigh, D., and Starr, E. W., 2006, Comparisons of shot-profile vs. plane-wave reverse time migration: 76th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2358 - 2361.
[16] Wang, X. C., Xia, C. L., and Liu, X. W., 2010, Downward and upward continuation of 2-D seismic data to eliminate ocean bottom topography’s effect: Applied Geophysics, 7(2), 149 - 157.
[17] Whitmore, N. D., 1982, Research workshop 4-migration: Fundamental issues and future developments: 52nd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 519 - 520.
[18] Xue, D. C., and Wang, S. X., 2008, Wave-equation finite-element prestack reverse-time migration: Oil Geophysical Prospecting, 43(1), 17 - 21.
[19] Xu, Y., 2008, Prestack reverse-time migration by the grid method: Progress in Geophysics, 23(3), 839 - 845.
[20] Zhang, Y., Sun, J., and Gray, S., 2007, Reverse-time migration: Amplitude and implementation issues: 77th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2145 - 2148.
[21] Zhang, Y., and Zhang, G. Q., 2009, One-step extrapolation method for reverse time migration: Geophysics, 74(4), 29 - 33.
[1] 刘国峰,孟小红,禹振江,刘定进. 多GPU TTI 介质逆时偏移*[J]. 应用地球物理, 2019, 16(1): 61-69.
[2] 戴世坤,赵东东,张钱江,李昆,陈轻蕊,王旭龙. 基于泊松方程的空间波数混合域重力异常三维数值模拟[J]. 应用地球物理, 2018, 15(3-4): 513-523.
[3] 成景旺,范娜,张友源,吕晓春. 基于贴体旋转交错网格的起伏地表地震波有限差分数值模拟[J]. 应用地球物理, 2018, 15(3-4): 420-431.
[4] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[5] 薛浩,刘洋. 基于多方向波场分离的逆时偏移成像方法[J]. 应用地球物理, 2018, 15(2): 222-233.
[6] 孙小东,贾延睿,张敏,李庆洋,李振春. 伪深度域最小二乘逆时偏移方法及应用[J]. 应用地球物理, 2018, 15(2): 234-239.
[7] 杨佳佳,栾锡武,何兵寿,方刚,潘军,冉伟民,蒋陶. 基于矢量波场逆时偏移的保幅角道集提取方法[J]. 应用地球物理, 2017, 14(4): 492-504.
[8] 孙小东,李振春,贾延睿. 基于变网格的不同观测系统下的逆时偏移[J]. 应用地球物理, 2017, 14(4): 517-522.
[9] 胡松,李军,郭洪波,王昌学. 水平井随钻电磁波测井与双侧向测井响应差异及其解释应用[J]. 应用地球物理, 2017, 14(3): 351-362.
[10] 孙小东,葛中慧,李振春. 基于共轭梯度法和互相关的最小二乘逆时偏移及应用[J]. 应用地球物理, 2017, 14(3): 381-386.
[11] 杨思通,魏久传,程久龙,施龙青,文志杰. 煤巷三维槽波全波场数值模拟与波场特征分析[J]. 应用地球物理, 2016, 13(4): 621-630.
[12] 孙小东,葛中慧,李振春,洪瑛. 黏声VTI介质逆时偏移成像稳定性研究[J]. 应用地球物理, 2016, 13(4): 608-613.
[13] 付博烨,符力耘,魏伟,张艳. 超声岩石物理实验尾波观测中边界反射的影响分析[J]. 应用地球物理, 2016, 13(4): 667-682.
[14] 陶蓓,陈德华,何晓,王秀明. 界面不规则性对套后超声波成像测井响应影响的模拟研究[J]. 应用地球物理, 2016, 13(4): 683-688.
[15] 常江浩,于景邨,刘志新. 煤矿老空水全空间瞬变电磁响应三维数值模拟及应用[J]. 应用地球物理, 2016, 13(3): 539-552.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司