APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2010, Vol. 7 Issue (3): 217-228    DOI: 10.1007/s11770-010-0252-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
利用基于子波估计的频谱校正方法提高Q值估计精度
屠宁,陆文凯
清华大学自动化系,北京 100084
Improve Q estimates with spectrum correction based on seismic wavelet estimation
Tu Ning1 and Lu Wen-kai1

1. State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China.

 全文: PDF (3136 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 用Q值刻画的地震衰减在地震信号处理和解释中具有很广泛的应用。利用反射地震资料进行Q值估计需要解决地震子波和反射系数序列耦合的问题。从反射地震资料中去除反射系数序列的影响,这个过程称为频谱校正。本文提出了一种基于子波估计的求取Q值的方法,进而设计了一个反Q滤波器。该方法利用反射地震资料的高阶统计量进行子波估计,并利用所估计子波实现频谱校正。我们利用合成数据实验给出了质心频移法与频谱比法这两种常用的Q值估计方法在不同参数设置下的性能。人工合成数据和实际数据处理表明,利用本文提出的方法进行频谱校正后,可以得到可靠的Q值估计。经过反Q滤波,地震数据的高频部分得到了有效地恢复。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
屠宁
陆文凯
关键词地震衰减   地震子波   品质因子   Q滤波     
Abstract: Characterization of seismic attenuation, quantified by Q, is desirable for seismic processing and interpretation. For seismic reflection data, the coupling between seismic wavelets and the reflectivity sequences hinders their usage for Q estimation. Removing the influence of the reflectivity sequences in reflection data is called spectrum correction. In this paper, we propose a spectrum correction method for Q estimation based on wavelet estimation and then design an inverse Q filter. The method uses higher-order statistics of reflection seismic data for wavelet estimation, the estimated wavelet is then used for spectral correction. Two Q estimation methods are used here, namely the spectral-ratio and centroid frequency shift methods. We test the characteristics of both Q estimation methods under different parameters through a synthetic data experiment. Synthetic and real data examples have shown that reliable Q estimates can be obtained after spectrum correction; moreover, high frequency components are effectively recovered after inverse Q filtering.
Key wordsseismic attenuation   seismic wavelet   quality factor   inverse Q filter   
收稿日期: 2010-07-30;
基金资助:

本研究由国家863项目(编号:2006AA09A101-0102)资助。

引用本文:   
屠宁,陆文凯. 利用基于子波估计的频谱校正方法提高Q值估计精度[J]. 应用地球物理, 2010, 7(3): 217-228.
TU Ning,LU Wen-Kai. Improve Q estimates with spectrum correction based on seismic wavelet estimation[J]. APPLIED GEOPHYSICS, 2010, 7(3): 217-228.
 
[1] Aldridge, D. F., 1990, The Berlage wavelet: Geophysics, 55, 1508 - 1511.
[2] Amundsen, L., and Mittet, R., 1994, Estimation of phase velocities and Q-factors from zero-offset, vertical seismic profile data: Geophysics, 59, 500 - 517.
[3] Dasgupta, R., and Clark, R. A., 1998, Estimation of Q from surface seismic reflection data: Geophysics, 63, 2120 - 2128.
[4] Hackert, C. L., and Parra, J. O., 2004, Improving Q estimates form seismic reflection data using well-log-based localized spectral correction: Geophysics, 69, 1521 - 1529.
[5] Hargreaves, N. D., and Calvert, A. J., 1991, Inverse Q filtering by Fourier transform: Geophysics, 56, 519 - 527.
[6] Hauge, P. S., 1981, Measurements of attenuation from vertical seismic profiles: Geophysics, 46, 1548 - 1558.
[7] Kormylo, J. J., and Mendel, J. M., 1982, Maximum likelihood detection and estimation of Bernoulli-Gaussian processes: IEEE Transactions on Information Theory, IT - 28, 482 - 488.
[8] Korneev, V. A., Goloshubin, G. M., Daley, T. M., and Silin, D. B., 2004, Seismic low-frequency effects in monitoring fluid-saturated reservoirs: Geophysics, 69, 522 - 532.
[9] Li, H., Zhao, W., Cao, H., Yao, F., and Shao, L., 2006, Measures of scale based on the wavelet scalogram with applications to seismic attenuation: Geophysics, 71(5), V111 - V118.
[10] Lu, W., Zhang, Y., Zhang, S., and Xiao, H., 2007, Blind wavelet estimation using a zero-lag slice of the fourth-order statistics: Journal of Geophysics and Engineering, 4, 24 - 30.
[11] Pinson, L. J. W., Henstock, T. J., Dix, J. K., and Bull, J. M., 2008, Estimating quality factor and mean grain size of sediments from high-resolution marine seismic data: Geophysics, 73(4), G19 - G28.
[12] Quan, Y., and Harris, J. M., 1997, Seismic attenuation tomography using the frequency shift method: Geophysics, 62, 895 - 905.
[13] Stainsby, S. D., and Worthington, M. H., 1985, Estimation from vertical seismic profile data and anomalous variations in the North Sea: Geophysics, 50, 615 - 626.
[14] Stockwell, R. G., Mansinha, L., and Lowe, R. P., 1996, Localization of the complex spectrum: The S transform: IEEE Transactions on Signal Processing, 44, 998 - 1001.
[15] Sun, X., Tang, X., Cheng, C. H., and Frazer, L. N., 2000, P- and S-wave attenuation logs from monopole sonic data: Geophysics, 65, 755 - 765.
[16] Varela, C. L., Rosa, A. L. R., and Ulrych, T. J., 1993, Modeling of attenuation and dispersion: Geophysics, 58, 1167 - 1173.
[17] Wang, Y., 2004, Q analysis on reflection seismic data: Geophysical Research Letters, 31, L17606.
[18] White, R. E., 1992, The accuracy of estimating Q from seismic data: Geophysics, 57, 1508 - 1511.
[19] Zhang, C., and Ulrych, T. J., 2002, Estimation of quality factors from CMP records: Geophysics, 67, 1542 - 1547.
[1] 王恩江,刘洋,季玉新,陈天胜,刘韬. 粘滞声波方程Q值波形反演方法研究*[J]. 应用地球物理, 2019, 16(1): 83-98.
[2] 吴宗蔚,伍翊嘉,徐明华,郭思. 连续谱比斜率法叠前CMP道集Q值估计[J]. 应用地球物理, 2018, 15(3-4): 481-490.
[3] 安勇. 叠前地震衰减各向异性的裂缝预测方法及应用[J]. 应用地球物理, 2015, 12(3): 432-440.
[4] 张军华, 张彬彬, 张在金, 梁鸿贤, 葛大明. 地震低频信息缺失特征分析及拓频方法研究[J]. 应用地球物理, 2015, 12(2): 212-220.
[5] 王宗俊, 曹思远, 张浩然, 曲英铭, 袁殿, 杨金浩, 张德龙, 邵冠铭. 能量比法提取品质因子Q[J]. 应用地球物理, 2015, 12(1): 86-92.
[6] 杨小慧, 曹思远, 李德春, 于鹏飞, 张浩然. 瑞利型槽波品质因子及特性分析[J]. 应用地球物理, 2014, 11(1): 107-114.
[7] 于永才, 王尚旭, 袁三一, 戚鹏飞. 基于保角变换的双谱域相位谱估计方法及其在地震子波估计中的应用[J]. 应用地球物理, 2011, 8(1): 36-47.
[8] 袁三一, 王尚旭. 子波相位不准对反演结果的影响[J]. 应用地球物理, 2011, 8(1): 48-59.
[9] 芦俊, 王赟. Kelvin粘弹性VTI介质中地震波的传播[J]. 应用地球物理, 2010, 7(4): 357-364.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司