APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2015, Vol. 12 Issue (2): 137-146    DOI: 10.1007/s11770-015-0491-2
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
3D density inversion of gravity gradient data using the extrapolated Tikhonov regularization
Liu Jin-Zhao1,2, Liu Lin-Tao2, Liang Xing-Hui2, and Ye Zhou-Run2
1. First Crust Monitoring and Application Center, China Earthquake Administration, Tianjin 300180, China.
2. State Key Laboratory of Geodesy and Earth's Dynamics, Institute of Geodesy and Geophysics, CAS, Wuhan, 430077, China.
 Download: PDF (989 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations between calculated and observed data. We also use the depth weighting function based on the eigenvector of gravity gradient tensor to eliminate undesired effects owing to the fast attenuation of the position function. Model data suggest that the extrapolated Tikhonov regularization in conjunction with the depth weighting function can effectively recover the 3D distribution of density anomalies. We conduct density inversion of gravity gradient data from the Australia Kauring test site and compare the inversion results with the published research results. The proposed inversion method can be used to obtain the 3D density distribution of underground anomalies.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Liu Jin-Zhao
Liu Lin-Tao
Liang Xing-Hui
Ye Zhou-Run
Key wordsextrapolated Tikhonov regularization   depth weighting   gravity gradient tensor   eigenvector     
Received: 2014-08-02;
Fund:

This work is supported by National major special equipment development (No. 2011YQ120045) and The National Natural Science Fund (No. 41074050 and 41304023).

Cite this article:   
Liu Jin-Zhao,Liu Lin-Tao,Liang Xing-Hui et al. 3D density inversion of gravity gradient data using the extrapolated Tikhonov regularization[J]. APPLIED GEOPHYSICS, 2015, 12(2): 137-146.
 
[1] Bear, G. W., Al-Shukri, H. J., and Rudman, A. J., 1995, Linear inversion of gravity data for 3-D density distributions: Geophysics, 60(5), 1354−1364.
[2] Beiki, M., and Pedersen, L. B., 2010, Eigenvector analysis of gravity gradient tensor to locate geologic bodies: Geophysics, 75(6), 137−149.
[3] Chen, S. H., Zhu, Z. Q., Lu, G. Y., et al., 2013, Inversion of gravity gradient tensor based on preconditioned conjugate gradient: Journal of Central South University(Science and Technology), 44(2), 619−625.
[4] Commer, M., 2011, Three-dimensional gravity modelling and focusing inversion using rectangular meshes: Geophysical Prospecting, 59(5), 966−979.
[5] Dransfield, M., 2007, Airborne gravity gradiometry in the search for mineral deposits: Proceedings on Mineral Exploration edited by B. Milkereit, Fifth Decennial International Conference, 341−354
[6] Feng, J., Meng, X. H., Chen, Z. X., et al., 2014, The investigation and application of three-dimensional density interface: Chinese J. Geophys.(in Chinese), 57(1), 287−294.
[7] Guo, W. B., Zhu, Z. Q., and Lu, G. Y., 2011, Quasi-BP neural network inversion of gravity gradient tensor: Journal of Central South University (Science and Technology), 42(12), 3797−3803.
[8] Guo, L. H., Meng, X. H., Shi, L., et al., 2009, 3-D correlation imaging for gravity and gravity gradiometry data: Chinese J. Geophys. (in Chinese), 52(4), 1092−1106.
[9] Hämarik, U., Palm, R., and Raus, T., 2007, Use of extrapolation in regularization methods: Journal of Inverse and Ill-Posed Problems, 15(3), 277−294.
[10] Hämarik, U., Palm, R., and Raus, T., 2008, Extrapolation of Tikhonov and Lavrentiev regularization methods: 6th International Conference on Inverse Problems in Engineering: Theory and Practice; Journal of Physics: Conference Series, 135(1), 1−8.
[11] Ke, X. P., Wang, Y., Xu, H. Z., et al., 2009, The three-dimensional crustal structure of the Tibetan plateau from gravity inversion:Progress in Geophysics (in Chinese), 24(2), 448−455.
[12] Lee, J. B., 2001, FALCON gravity gradiometer technology: Exploration Geophysics, 32, 247−250.
[13] Li, Y. G., and Oldenburg, D. W., 1996, 3-D inversion of magnetic data: Geophysics, 61(2), 394−408.
[14] Li, Y. G., and Oldenburg, D. W., 1998, 3-D inversion of gravity data: Geophysics, 63(1), 109−119.
[15] Li, Y. G., 2001, 3-D inversion of gravity gradiometer data: 71st Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts,, Expanded Abstracts, 1470−1473.
[16] Liu, Y. P., Wang, Z. W., Du, X. J., et al., 2013, 3D constrained inversion of gravity data based on Extrapolation Tikhonov regularization algorithm: Chinese J.Geophys.(in Chinese), 56(5), 1650−1659.
[17] Martinez, C., and Li, Y. G., 2012, Understanding gravity gradiometry processing and interpretation through the Kauring test site data: 22nd ASEG International Geophysical Conference and Exhibition, 1−4.
[18] Palm, R., 2010, Numerical comparison of regularization algorithms for solving ill-posed problems: PhD Thesis, University of Tartu.
[19] Rama, P., Rao, K. V., Swamy, I. V., and Radhakrishna Murthy, 1999, Inversion of gravity anomalies of three-dimensional density interfaces: Computers & Geoscience, 25(8), 887−896.
[20] Pawlowski, B., 1998, Gravity gradiometry in resource exploration: The Leading Edge, 17, 51−52.
[21] Rama, P., Rao, K. V., Swamy, I. V., and Radhakrishna, M., 1999, Inversion of gravity anomalies of three-dimensional density interfaces: Computers & Geoscience, 25(8), 887−896.
[22] Hämarik, U., PalmR., and Raus, T., 2010, Extrapolation of Tikhonov regularization method, Mathematical Modelling and Analysis, 15(1), 55−68.
[23] Vasilevsky, A., Droujinine, A., and Evans, R., 2005, Regularized inversion of 3D full tensor gradient (FTG) data for dynamic reservoir monitoring: 75th Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 24, 700−703.
[24] Wang, Z. W., Xu, S., Liu, Y. P., et al., 2014, Extrapolated Tikhonov method and inversion of 3D density images of gravity data: Applied Geophysics, 11(2), 139−148.
[25] Wang, H. R., Chen C., and Du, J. S., 2013, 3-D inversion method and application of gravity gradient tensor data: Oil Geophysical Prospecting, 48(3), 475−481.
[26] Wedge, D., 2013, Mass anomaly depth estimation from full tensor gradient gravity data: Applications of Computer Vision, IEEE workshop, 526−533.
[27] Zhdanov, M.S., Ellis, R.G., Mukherjee,S., et al, 2002, Regularized focusing inversion of 3-D gravity tensor data: 72nd Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 751−754.
[28] Zhdanov, M. S., Robert Ellis, and Souvik Mukherjee, 2004, Three-dimensional regularized focusing inversion of gravity gradient tensor component data: Geophysics, 69(4), 925−937.
[1] Hou Zhen-Long, Huang Da-Nian, Wang En-De, and Cheng Hao. 3D density inversion of gravity gradiometry data with a multilevel hybrid parallel algorithm[J]. APPLIED GEOPHYSICS, 2019, 16(2): 141-153.
[2] Zhang Dai-Lei, Huang Da-Nian, Yu Ping, Yuan Yuan. Translation-invariant wavelet denoising of full-tensor gravity –gradiometer data[J]. APPLIED GEOPHYSICS, 2017, 14(4): 606-619.
[3] Wang Tai-Han, Huang Da-Nian, Ma Guo-Qing, Meng Zhao-Hai, Li Ye. Improved preconditioned conjugate gradient algorithm and application in 3D inversion of gravity-gradiometry data[J]. APPLIED GEOPHYSICS, 2017, 14(2): 301-313.
[4] WANG Zhu-Wen, XU Shi, LIU Yin-Ping, LIU Jing-Hua. Extrapolated Tikhonov method and inversion of 3D density images of gravity data[J]. APPLIED GEOPHYSICS, 2014, 11(2): 139-148.
[5] YUAN Yuan, HUANG Da-Nian, YU Qing-Lu, GENG Mei-Xia. Noise filtering of full-gravity gradient tensor data[J]. APPLIED GEOPHYSICS, 2013, 10(3): 241-250.
[6] JIANG Fu-Yu, HUANG Yan, YAN Ke. Full gravity gradient tensors from vertical gravity by cosine transform[J]. APPLIED GEOPHYSICS, 2012, 9(3): 247-260.
[7] JIANG Fu-Yu, GAO Li-Kun. Edge enhancement of gravity anomalies and gravity gradient tensors using an improved small sub-domain filtering method*[J]. APPLIED GEOPHYSICS, 2012, 9(2): 119-130.
[8] SUN Peng-Fei, WU Yan-Gang, YANG Chun-Cheng, HAN Zhao-Hong, FAN Mei-Ning. Selecting the optimum location of the corner using gravity gradient method *[J]. APPLIED GEOPHYSICS, 2011, 8(4): 269-276.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn