APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2015, Vol. 12 Issue (2): 147-156    DOI: 10.1007/s11770-015-0481-5
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Airborne gravimetry data sparse reconstruction via L1-norm convex quadratic programming
Yang Ya-Peng1, Wu Mei-Ping1, and Tang Gang2
1. College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, China.
2. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
 Download: PDF (748 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract In practice, airborne gravimetry is a sub-Nyquist sampling method because of the restrictions imposed by national boundaries, financial cost, and database size. In this study, we analyze the sparsity of airborne gravimetry data by using the discrete Fourier transform and propose a reconstruction method based on the theory of compressed sensing for large-scale gravity anomaly data. Consequently, the reconstruction of the gravity anomaly data is transformed to a L1-norm convex quadratic programming problem. We combine the preconditioned conjugate gradient algorithm (PCG) and the improved interior-point method (IPM) to solve the convex quadratic programming problem. Furthermore, a flight test was carried out with the homegrown strapdown airborne gravimeter SGA-WZ. Subsequently, we reconstructed the gravity anomaly data of the flight test, and then, we compared the proposed method with the linear interpolation method, which is commonly used in airborne gravimetry. The test results show that the PCG–IPM algorithm can be used to reconstruct large-scale gravity anomaly data with higher accuracy and more effectiveness than the linear interpolation method.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Yang Ya-Peng
Wu Mei-Ping
Tang Gang
Key wordsCompressed sensing   interior-point method   sub-Nyquist sampling   airborne gravimetry   Fourier transform     
Received: 2014-12-22;
Fund:

The research is supported by the National High Technology Research and Development Program of China (No. SS2013AA060402).

Cite this article:   
Yang Ya-Peng,Wu Mei-Ping,Tang Gang. Airborne gravimetry data sparse reconstruction via L1-norm convex quadratic programming[J]. APPLIED GEOPHYSICS, 2015, 12(2): 147-156.
 
[1] Baye, R., 2002, Airborne gravity measurements over mountainous areas by using a LaCoste & Romberg air-sea gravity meter: Geophysics, 67(3), 807-816.
[2] Boyd, S., and Vandenberghe, L., 2004, Duality, In Boyd, S., and Vandenberghe, L., Eds., Convex Optimization: Cambridge University Press.
[3] Boyd, S., and Vandenberghe, L., 2004, Interior-point methods, In Boyd, S., and Vandenberghe, L., Eds., Convex Optimization: Cambridge University Press.
[4] Cai, R., Zhao, Q., She, D. P., Yang, L., Cao, H., and Yang, Q. Y., 2014, Bernoulli-based random undersampling schemes for 2D seismic data regularization: Applied Geophysics, 11(3), 321-330.
[5] Cai, S. K., Zhang, K. D., Wu, M. P., and Huang, Y. M., 2013, The first airborne scalar gravimetry system based on SINS/DGPS in China: Science China Earth Sciences, 56(12), 2198-2208.
[6] Candès, E., and Romberg, J., 2006, Quantitative robust uncertainty principles and optimally sparse decompositions: Found. Comput. Math., 6(2), 227-254.
[7] Candès, E., and Tao, T., 2006, Near optimal signal recovery from random projections: Universal encoding strategies: IEEE Trans. Inf. Theory, 52(12), 5406-5425.
[8] Candès, E., Romberg, J., and Tao, T., 2006, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information: IEEE Trans. Inf. Theory, 52(2), 489-509.
[9] Candès, E., Romberg, J., and Tao, T., 2006, Stable signal recovery from incomplete and inaccurate measurements: Commun. Pure Appl. Math., 59(8), 1207-1223.
[10] Daubechies, I., Defrise, M., and Demol, C., 2004, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint: Communications on Pure and Applied Mathematics, 57, 1413-1541.
[11] Davenport, M., Duarte, M., Eldar, Y. C., and Kutyniok, G., 2012, Introduction to compressed sensing, In Eldar, Y. C., and Kutyniok, G., Eds., Compressed Sensing: Theory and Applications: Cambridge University Press.
[12] Donoho, D. L., 2006, Compressed sensing: IEEE Trans. Inf. Theory, 52(4), 1289-1306.
[13] Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R., 2004, Least angle regression: Annals of Statistics, 32(2), 407-499.
[14] Elad, M., Matalon, B., and Zibulevsky, M., 2006, Image denoising with shrinkage and redundant representations: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recogn (CVPR), New York, USA, 1924-1931.
[15] Figueiredo, M., and Nowak, R., 2005, A bound optimization approach to wavelet-based image deconvolution: Proceedings of IEEE International Conference on Image Processing (ICIP), Genoa, Italy, 782-785.
[16] Hong, S., 2005, Observability of error states in GPS/INS integration: IEEE Transactions on vehicular technology, 54(2), 731-743.
[17] Huang, Y. M., Olesen, A. V., Wu, M. P., and Zhang, K. D., 2012, SGA-WZ: A new strapdown airborne gravimeter: Sensors, 12, 9336-9348.
[18] Johnson, C., Seidel, J., and Sofer, A., 2000, Interior point methodology for 3-D PET reconstruction: IEEE Trans. Med. Imag., 19(4), 271-285.
[19] Kim, S. J., Koh, K., Lustig, M., Boyd, S., and Gorinevsky, D., 2007, An interior-point method for large-scale l1-regularized least squares: IEEE J. Sel. Top. Signal Process, 1(4), 606-617.
[20] Koh, K., Kim, S. J., and Boyd, S., 2007, An interior-point method for L1-regularized logistic regression: J. Mach. Learning Res., 8, 1519-1555.
[21] Nettleton, L. L., LaCoste, L., and Harrison, J. C., 1960, Test of an airborne gravity meter: Geophysics, 25(1), 181-202.
[22] Nyquist, H., 1928, Certain topics in telegraph transmission theory: Trans. AIEE, 47, 617-644.
[23] Osborne, M., Presnell, B., and Turlach, B., 2000, A new approach to variable selection in least squares problems: IMA Journal of Numerical Analysis, 20(3), 389-403.
[24] Shannon, C., 1949, Communication in the presence of noise: Proc. Inst. Radio Eng., 37(1), 10-21.
[25] Thompson, L., and LaCoste, L., 1960, Aerial gravity measurements: J. Geophys. Res., 65(1), 305-322.
[26] Vandenberghe, L., and Boyd, S., 1995, A primal-dual potential reduction method for problems involving matrix inequalities: Mathemat. Program., 69, 205-236.
[27] Verdun, J., and Klingele, E. E., 2003, The alpine Swiss-French airborne gravity survey: Geophysical Journal International, 152(1), 8-19.
[28] Verdun, J., and Klingele, E. E., 2005, Airborne gravimetry using a strapped-down LaCoste and Romberg air/sea gravity meter system: a feasibility study: Geophysical Prospecting, 53(1), 91-101.
[29] Wang, D. L., Tong, Z. F., Tang, C., and Zhu, H., 2010, An iterative curvelet thresholding algorithm for seismic random noise attenuation: Applied Geophysics, 7(4), 315-324.
[30] Wang, L. H., Zhang, C. D., and Wang, J. Q., 2008, Mathematical models and accuracy evaluation for the airborne gravimetry: J. Geom. Sci. Technol., 25, 68-71.
[31] Xia, Z., and Sun, Z. M., 2006, The technology and application of airborne gravimetry: Sci. Surv. Mapp., 31, 43-46.
[1] Cao Zhong-Lin, Cao Jun-Xing, Wu Fu-Rong, He Guang-Ming, Zhou Qiang, and Wu Yu-Lin. Mixed Cadzow filtering method in fractional Fourier domain[J]. APPLIED GEOPHYSICS, 2018, 15(2): 271-279.
[2] Li Guang, Xiao Xiao, Tang Jing-Tian, Li Jin, Zhu Hui-Jie, Zhou Cong, Yan Fa-Bao. Near-source noise suppression of AMT by compressive sensing and mathematical morphology filtering[J]. APPLIED GEOPHYSICS, 2017, 14(4): 581-590.
[3] Ge Zi-Jian, Li Jing-Ye, Pan Shu-Lin, Chen Xiao-Hong. A fast-convergence POCS seismic denoising and reconstruction method[J]. APPLIED GEOPHYSICS, 2015, 12(2): 169-178.
[4] Zhang Jun-Hua, Zhang Bin-Bin, Zhang Zai-Jin, Liang Hong-Xian, Ge Da-Ming. Low-frequency data analysis and expansion[J]. APPLIED GEOPHYSICS, 2015, 12(2): 212-220.
[5] GOU Fu-Yan, LIU Cai, LIU Yang, FENG Xuan, CUI Fang-Zi. Complex seismic wavefield interpolation based on the Bregman iteration method in the sparse transform domain[J]. APPLIED GEOPHYSICS, 2014, 11(3): 277-288.
[6] CAI Rui, ZHAO Qun, SHE De-Ping, YANG Li, CAO Hui, YANG Qin-Yong. Bernoulli-based random undersampling schemes for 2D seismic data regularization[J]. APPLIED GEOPHYSICS, 2014, 11(3): 321-330.
[7] ZHANG Hua, CHEN Xiao-Hong, WU Xin-Min. Seismic data reconstruction based on CS and Fourier theory
[J]. APPLIED GEOPHYSICS, 2013, 10(2): 170-180.
[8] JIANG Fu-Yu, HUANG Yan, YAN Ke. Full gravity gradient tensors from vertical gravity by cosine transform[J]. APPLIED GEOPHYSICS, 2012, 9(3): 247-260.
[9] XU De-Ping, GUO Ke. Fractional S transform – Part 1: Theory*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 73-79.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn