APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2015, Vol. 12 Issue (2): 127-136    DOI: 10.1007/s11770-015-0486-0
article Current Issue | Next Issue | Archive | Adv Search  |  Next Articles  
Multiobjective particle swarm inversion algorithm for two-dimensional magnetic data
Xiong Jie1,2 and Zhang Tao2
1. School of Electronics and Information, Yangtze University, Jingzhou 434023, China.
2. Institute of Modeling and Computation Technology of Oil Industry, Yangtze University, Jingzhou 434023, China.
 Download: PDF (896 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Regularization inversion uses constraints and a regularization factor to solve ill-posed inversion problems in geophysics. The choice of the regularization factor and of the initial model is critical in regularization inversion. To deal with these problems, we propose a multiobjective particle swarm inversion (MOPSOI) algorithm to simultaneously minimize the data misfit and model constraints, and obtain a multiobjective inversion solution set without the gradient information of the objective function and the regularization factor. We then choose the optimum solution from the solution set based on the trade-off between data misfit and constraints that substitute for the regularization factor. The inversion of synthetic two-dimensional magnetic data suggests that the MOPSOI algorithm can obtain as many feasible solutions as possible; thus, deeper insights of the inversion process can be gained and more reasonable solutions can be obtained by balancing the data misfit and constraints. The proposed MOPSOI algorithm can deal with the problems of choosing the right regularization factor and the initial model.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Xiong Jie
Zhang Tao
Key wordsmultiobjective inversion   particle swarm optimization   regularization factor   global search   magnetic data     
Received: 2015-03-07;
Fund:

This work was supported by the Natural Science Foundation of China (No. 61273179) and Department of Education, Science and Technology Research Project of Hubei Province of China (No. D20131206, No. 20141304).

Cite this article:   
Xiong Jie,Zhang Tao. Multiobjective particle swarm inversion algorithm for two-dimensional magnetic data[J]. APPLIED GEOPHYSICS, 2015, 12(2): 127-136.
 
[1] Carlos, A. C. C., Gregorio, T. P., and Maximino, S. L., 2004, Handling multiple objectives with particle swarm optimization: IEEE trans on evolutionary computation, 8(3), 256−279.
[2] Gribenko, A., and Zhdanov, M. S., 2007, Rigorous 3D inversion of marine CSEM data based on the integral equation method: Geophysics, 72(2), WA73−WA84.
[3] Hansen, P. C., and O’Leary, D. P., 1993, The use of L-curve in the regularization of discrete ill-posed problems: SIAM Journal on Numerical Analysis, 14(6), 1487−1530.
[4] Kennedy, J., and Eberhart, R., 1995, Particle swarm optimization: IEEE Int Conf on Neural Networks, Perth, Australia, 1942−1948.
[5] Li, D. Q., Wang, G. J., Di, Q. Y., Wang, M. Y., and Wang, R., 2008, The application of genetic algorithm to CSAMT inversion for minimum structure: Chinese Journal of Geophysics (in Chinese), 51(4), 1234−1245.
[6] Nabighian, M. N., Grauch V. J. S., Hansen R. O., LaFehr, T. R., Li, Y. Peirce, J. W., Phillips, J. D., and Ruder, M. E., 2005, The historical development of the magnetic method in exploration: Geophysics, 70(6), 33ND−61ND.
[7] Sen, M. K., and Stoffa, P. L., 2013, Global optimization methods in geophysical inversion: Cambridge University Press, UK.
[8] Shi, X. M., Xiao, M., Fan, J. K., Yang, G. S., and Zhang, X. H., 2009, The damped PSO algorithm and its application for magnetotelluric sounding data inversion: Chinse Journal of Geophysics (in Chinese), 52(4), 1114−1120.
[9] Song, W. Q., Gao, Y. K., and Zhu, H. W., 2013, The differential evolution inversion method based on Bayesian theory for micro-seismic data: Chinese journal of geophyics (in Chinese), 56(4), 1331−1339.
[10] Stocco, S., Godio, A., and Sambuelli, L., 2009. Modelling and compact inversion of magnetic data: A Matlab code: Computers & Geosciences, 35(10), 2111−2118.
[11] Telford, W. M., Gedart, L. P., and Sheriff, R. E., 1990, Applied Geophysics: Cambridge University Press, Cambridge, UK.
[12] Tikhonov, A. N., 1963, Regularization of incorrectly posed problem: Soviet Mathematics Doklady, 4(6), 1624−1627
[13] Wang, Z. W., Xu, S., Liu, Y. P., and Liu, J. H., 2014, Extrapolated Tikhonov method and inversion of 3D density images of gravity data: Applied Geophysics, 11(2), 139−148.
[14] Wei, C., Li, X. F., and Zhen, X. D., 2010, The group search-based parallel algorithm for the serial Monte Carlo inversion method: Applied Geophysics, 7(2), 127−134.
[15] Wierzbicki, A. P., and Qian, Y., 1982, Introduce to the methodology of multi objective optimization, Chinese Journal of Operations Research (in Chinese), 1(1), 47−52.
[16] Wu, X. P., and Xu, G. M., 1998, Improvement of Occam’s inversion for MT Data: Acta Geophysica Sinica, 41(4), 547−554.
[17] Wu, X. P., and Xu, G. M., 2000, Study on 3-D resistivity inversion using conjugate gradient method: Chinese Journal of Geophysics (in Chinese), 43(3), 420−427.
[18] Xiang, Y., Yu, P., Chen, X., and Tang, R., 2013, An improved adaptive regularized parameter selection in Magnetotelluric inversion: Journal of Tongji Universityv (Natural Science) (in Chinese), 41(9), 1429−1434.
[19] Xiong, J., Meng, X. H., Liu, C. Y., and Peng, M., 2012, Magnetotelluric inversion based on differential evolution: Geophysical and Geochemical Exploration (in Chinese), 36(3), 448−451.
[20] Xiong, J., Liu, C. Y., and Zou, C. C., 2013, The induction logging inversion based on particle swarm optimization: Geophysical and Geochemical Exploration (in Chinese), (in Chinese), 37(6), 1141−1145.
[21] Yu, P., Wang, J. L., Wu, J. S., and Wang, D. W., 2007, Constrained joint inversion of gravity and seismic data using the simulated annealing algorithm: Chinese Journal of Geophysics (in Chinese), 50(2), 529−538.
[22] Yuan, S. Y., Wang, S. X., and Tian, N., 2009, Swarm intelligence optimization and its application in geophysical data inversion: Applied Geophysics, 6(2), 166−174.
[23] Zhang, H. B., Shang, Z. P., Yang, C. C., and Duan, Q. L., 2005, Estimation of regular parameters for the impedance inversion: Chinese Journal of Geophysics (in Chinese), 48(1), 181−188.
[24] Zhdanov, M. S., 2002, Geophysical Inverse Theory and Regularization problems, volume 36 (Methods in Geochemistry and Geophysics): Elsevier Science.
[25] Zhdanov, M. S., Ellis, R., and Mukherjee, S., 2004, Three-dimensional regularized focusing inversion of gravity gradient tensor component data: Geophysics, 69(4), 925−937.
[1] YUAN San-Yi, WANG Shang-Xu, TIAN Nan. Swarm intelligence optimization and its application in geophysical data inversion[J]. APPLIED GEOPHYSICS, 2009, 6(2): 166-174.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn