APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (3): 261-269    DOI: 10.1007/s11770-012-0336-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
探地雷达三维属性技术在考古调查中的应用研究
赵文轲1,田钢1,王帮兵1,石战结2,林金鑫2
1. 浙江大学地球科学系,杭州 310027
2. 浙江大学文化遗产研究院,杭州 310000
Application of 3D GPR attribute technology in archaeological investigations
Zhao Wen-Ke1, Tian Gang1, Wang Bang-Bing1, Shi Zhan-Jie2, and Lin Jin-Xin2
1. Department of Earth Sciences, Zhejiang University, Hangzhou 310027, China.
2. Academy of Cultural Heritage, Zhejiang University, Hangzhou 310027, China.
 全文: PDF (1427 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 近年来,探地雷达属性技术得到快速发展,并被应用于诸多领域,但在考古领域的应用有待进一步研究。尤其是如何从二维或三维雷达数据体中提取有效属性,对大型文化遗址中不同的考古目标进行解释。我们在云南腾冲南诏古城遗址的调查中,应用了探地雷达技术。为更好地对不同的考古目标体(古城墙、古窑址和古墓葬)进行刻画,我们把采集到的探地雷达资料进行了规范化整理,输入到地震数据处理和解释的工作站,结合考古钻探资料,进行了数据处理和多种探地雷达属性的提取、分析及优化组合,最后应用均方根振幅、平均波峰振幅、瞬时相位和最大波峰时间对三种目标体进行解释。通过对比分析,我们明确了在对不同的考古目标体进行解释时,应该使用不同的属性特征;层位追踪之后进行属性提取和分析的效果要好于普通的等时切片。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵文轲
田钢
王帮兵
石战结
林金鑫
关键词探地雷达   属性技术   考古调查     
Abstract: Ground penetrating radar (GPR) attribute technology has been applied to many aspects in recent years but there are very few examples in the fi eld of archaeology. Especially how can we extract effective attributes from the two- or three-dimensional radar data so that we can map and describe numerous archaeological targets in a large cultural site? In this paper, we applied GPR attribute technology to investigate the ancient Nanzhao castle-site in Tengchong, Yunnan Province. In order to get better archaeological target (the ancient wall, the ancient kiln site, and the ancient tomb) analysis and description, we collated the GPR data by collected standardization and then put them to the seismic data processing and interpretation workstation. The data was processed, including a variety of GPR attribute extraction, analysis, and optimization and combined with the archaeological drilling data. We choose the RMS Amplitude, Average Peak Amplitude, Instantaneous Phase, and Maximum Peak Time to interpret three archaeological targets. By comparative analysis, we have clarified that we should use different attributes to interpret different archaeological targets and the results of attribute analysis after horizon tracking is much better than the results based on a time slice.
Key wordsGPR   attribute   archaeological investigation   
收稿日期: 2011-10-11;
基金资助:

国家自然基金(课题编号:41176167)和浙江省文物保护项目(课题编号:2010001和2011008)。

通讯作者: 田钢     E-mail: Email: tiangang@zju.edu.cn
引用本文:   
赵文轲,田钢,王帮兵等. 探地雷达三维属性技术在考古调查中的应用研究[J]. 应用地球物理, 2012, 9(3): 261-269.
ZHAO Wen-Ke,TIAN Gang,WANG Bang-Bing et al. Application of 3D GPR attribute technology in archaeological investigations[J]. APPLIED GEOPHYSICS, 2012, 9(3): 261-269.
 
[1] Annan, A. P., 2003, Ground penetrating radar application principles, Procedures and applications: Sensors & Software Inc.
[2] Baker, B. S., Steeples, D. W., Schmeissner, C., Pavlovic, M., and Plumb, R., 2001, Near-surface imaging using coincident seismic and GPR data: Geophysical Research Letters, 28(4), 627 - 630.
[3] Böniger, U., and Tronicke, J., 2010a, Improving the interpretability of 3D GPR data using target-specific attributes: application to tomb detection: Journal of Archaeological Science, 37, 672 - 679.
[4] Böniger, U., and Tronicke, J., 2010b, Integrated data analysis at an archaeological site: A case study using 3D GPR, magnetic, and high-resolution topographic data: Geophysics, 75(4), B169 - B176.
[5] Booth, A. D., Clark, R. A., and Murray, T., 2011, Influences on the resolution of GPR velocity analyses and a Monte Carlo simulation for establishing velocity precision: Near Surface Geophysics, 9(5), 399 - 411.
[6] Bradford, J. H., Dickins, D. F., and Brandvik, P. J., 2010, Assessing the potential to detect oil spills in and under snow using airborne ground-penetrating radar: Geophysics, 75(2), G1 - G12.
[7] Cardimona, S. J., Clement, W. P., and Kadinsky-Cade, K., 1998, Seismic reflection and ground-penetrating radar imaging of a shallow aquifer: Geophysics, 63(4), 1310 - 1317.
[8] Chopra, S., and Alexeev, V., 2006, Applications of texture attribute analysis to 3D seismic data: The Leading Edge, 25, 934 - 940.
[9] Chopra, S., and Marfurt, K. J., 2005, Seismic attributes - A historical perspective: Geophysics, 70(5), 3SO - 28SO.
[10] Conyers, L. B., and Goodman, D., 1997, Ground-penetrating radar - An introduction for archaeologists: AltaMira Press.
[11] Conyers. L. B., 2010, Ground-penetrating radar for anthropological research: Antiquity, 84(323), 175 - 184.
[12] Corbeanu, R. M., McMechan, G. A., Szerbiak, R. B., and Soegaard, K., 2002, Prediction of 3-D fluid permeability and mudstone distributions from ground-penetrating radar (GPR) attributes: Example from the Cretaceous Ferron Sandstone Member, east-central Utah: Geophysics, 67(5), 1495 - 1504.
[13] Francese, R. G., Finzi, E., and Morelli, G., 2009, 3-D high-resolution multi-channel radar investigation of a Roman village in Northern Italy: Journal of Applied Geophysics, 67(1), 41 - 51.
[14] Gao, D., 2003, Volume texture extraction for 3D seismic visualization and interpretation: Geophysics, 68, 1294 - 1302.
[15] Gracia, V. P., Canas, J. A., Pujades, L. G., Clapes, J., Caselles, O., Garcia, F., and Osorio, R., 2000, GPR survey to confirm the location of ancient structures under the Valencian Cathedral (Spain): Journal of Applied Geophysics, 43(2 - 4), 167 - 174.
[16] Luigia, N., Giovanni, L., Sergio, N., Maria, T. C., and Tatiana, Q., 2002, Application of 3D visualization techniques in the analysis of GPR data for archaeology: Annals of Geophysics, 45(2), 321 - 337.
[17] McClymont, A. F., Green, A. G., Streich, R., and et al., 2008, Visualization of active faults using geometric attributes of 3D GPR data: An example from the Alpine Fault Zone, New Zealand: Geophysics, 73, B11 - B23.
[18] Marfurt, K. J., Kirlin, R. L., Farmer, S. L., and Bahorich, M. S., 1998, 3-D seismic attributes using a semblance-based coherency algorithm: Geophysics, 63, 1150 - 1165.
[19] Pipan, M., Baradello, L., Forte, E., Prizzon, A., and Finetti, I., 1999, 2D and 3D processing and interpretation of multi-fold ground penetrating radar data: a case history from an archaeological site: Journal of Applied Geophysics, 41, 271 - 292.
[20] Sassen, D. S., and Everett, M. E., 2009, 3D polarimetric GPR coherency attributes and full-waveform inversion of transmission data for characterizing fractured rock: Geophysics, 74(3), J23 - J34.
[21] Senecha, P., Perroud, H., and Senechal, G., 2000, Interpretation of reflection attributes in a 3-D GPR survey at Vall’e d’Ossau, western Pyrenees, France: Geophysics, 65(5), 1435 - 1445.
[22] Shaaban, F. A., Abbas, A. M., and et al., 2009, Ground-penetrating radar exploration for ancient monuments at the Valley of Mummies-Kilo 6, Bahariya Oasis, Egypt: Journal of Applied Geophysics, 68, 194 - 202.
[23] Young, R. A., Deng, Z., Marfurt, K. J., and Nissen, E., 1997, 3-D dip filtering and coherence applied to GPR data: A study: The Leading Edge, 16, 1011 - 1018.
[1] 曾昭发, 陈雄, 李静, 陈玲娜, 鹿琪, 刘凤山. 随机等效介质探地雷达参数递推阻抗反演研究[J]. 应用地球物理, 2015, 12(4): 615-625.
[2] 曾昭发, 吴丰收, 黄玲, 刘凤山, 孙继广. 应用改进Chirplet变换进行探地雷达数据处理和目标探测[J]. 应用地球物理, 2009, 6(2): 192-200.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司