APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (3): 270-278    DOI: 10.1007/s11770-012-0337-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
斑岩铜矿床及控矿构造的3D电性结构——以沙溪铜矿为例
陈向斌1,吕庆田1,严加永1
1. 中国地质科学院矿产资源研究所,北京 100037
3D electrical structure of porphyry copper deposit: A case study of Shaxi copper deposit
Chen Xiang-Bin1, Lv Qing-Tian1, and Yan Jia-Yong1
1. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China.
 全文: PDF (1083 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 庐枞矿集区内的沙溪斑岩铜矿床是长江中下游成矿带中一个典型的岩浆热液型矿床。为了查明沙溪斑岩铜矿床深部岩体范围及控矿构造空间特征,作者在矿区进行了AMT探测,经过数据去噪处理和反演得到了18条电阻率拟二维断面图。反演结果表明受背斜控制的石英闪长斑岩体与志留系地层电性差异明显,呈现高阻特征;通过对电阻率值进行3D 克里金(Kriging)插值及可视化显示,建立了石英闪长斑岩3D电阻率模型,揭示了深部岩体的形态和空间分布,为矿区及外围找矿提供了参考依据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈向斌
吕庆田
严加永
关键词AMT探测   3D电性结构   斑岩铜矿   Kriging插值   三维可视化     
Abstract: Located in Lu-Zong ore concentration area, middle-lower Yangtze metallogenic belt, ShaXi porphyry copper deposit is a typical hydrothermal deposit. To investigate the distribution of deep ore bodies and spatial characteristics of host structures, an AMT survey was conducted in mining area. Eighteen pseudo-2D resistivity sections were constructed through careful processing and inversion. These sections clearly show resistivity difference between the Silurian sandstones formation and quartz diorite porphyry and this porphyry copper formation was controlled by the highly resistive anticlines. Using 3D block Kriging interpolation method and 3D visualization techniques, we constructed a detailed 3D resistivity model of quartz diorite porphyry which shows the shape and spatial distribution of deep ore bodies. This case study can serve as a good example for future ore prospecting in and around this mining area
Key wordsAMT   3D resistivity characteristics   porphyry copper deposit   Kriging interpolation   3D visualization   
收稿日期: 2011-10-10;
基金资助:

本文研究由由国家自然科学基金重点项目(编号40930418)、国家科技专项“深部矿产资源立体探测技术与实验(SinoProbe-03)”和中国地质科学院矿产资源研究所基本科研业务费专项资金项目(编号K1008)联合资助。

引用本文:   
陈向斌,吕庆田,严加永. 斑岩铜矿床及控矿构造的3D电性结构——以沙溪铜矿为例[J]. 应用地球物理, 2012, 9(3): 270-278.
CHEN Xiang-Bin,LV Qing-Tian ,YAN Jia-Yong. 3D electrical structure of porphyry copper deposit: A case study of Shaxi copper deposit[J]. APPLIED GEOPHYSICS, 2012, 9(3): 270-278.
 
[1] Bostick, F. X., 1977, A simple almost exact method of magnetotelluric analysis. In: Ward, S.(ed.). Workshop on electrical methods in geothermal exploration: United States Geological Survey, Contract N°.1408001-G-359, 174 - 183.
[2] Bronner, G., and Fourno, J. P., 1992, Audio-magnetotelluric investigation of allochthonous iron formations in the Archaean Reguibat shield(Mauritania): structural and mining implications: Journal of African Earth Sciences, 15(3/4), 341 - 351.
[3] Cagniard,L.,1953, Basic theory of the magnetotelluric method:Geophysics,18, 605-635.
[4] Chang, Y. F., Liu, X. P., and Wu, Y. C., 1991, Iron-Copper Mineralization Belt of Middle-Lower Yan gtze Valley: China Geological Publishing Press, 1 - 147.
[5] Delaye, F., 1973, Influence du courant de déplacement en magnetotellurique aux hautes frequencies: colloque de géophysique miniére, 85 - 88.
[6] Fernando, A. M. S., António, T., António, S., Rafael, L., Nuno, L., Liliana, M., Eugénio, A., João, L.G., and Jorge, M. M., 2006, An audio-magnetotelluric investigation in Terceira Island (Azores): Journal of Applied Geophysics, 59, 314 - 323.
[7] Gasperikova, E., Cuevas, N. H, and Morrison, H. F. 2005, Natural field induced polarization for mapping of deep mineral deposits: A field example from Arizona: Geophysics, 70(6), 61 - 66.
[8] Grant, N, and Rodney K. A, 2008, Progressive geophysical exploration strategy at the Shea Creek uranium deposit: The Leading Edge, 52 - 63.
[9] Heinson, G. S., Direen, N. G., and Gill, R. M., 2006, Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper-gold deposit, southern Australia: Geological Society of America , 34(7), 573 - 576.
[10] Jones, A.G., and Garcia, X., 2003, Okak Bay AMT data-set case study: Lessons in dimensionality and scale: Geophysics, 68(1), 70 - 91.
[11] Lakanen, E., 1986, Scalar audiomagnetotellurics applied to base-metal exploration in Finland: Geophysics, 51, 1628 - 1646.
[12] Meng, G. X., and Lan,X., 2006, Characteristics of EH-4 electrical conductivity imaging system and its application to ore exploration: Mineral Deposits, 25(1), 36 - 42.
[13] Pospeeva, E.V., 2008, Application of medium-scale magnetotelluric sounding to identify deep criteria for promising areas for Kimberlite Exploration: Russian Journal of Pacific Geology, 2(3), 205 - 217.
[14] Ren, Q. J., Qiu, J. S., Xu, Z. W., Zhang, Z. Z., Fang, C. Q., and Yang, R. Y., 1991, Formation conditions of mineralized stock in the Shaxi porphyry copper (gold) deposit, Anhui province: Mineral Deposits, 10(3), 232 - 241.
[15] Shen, Y. C., Shen, P., Liu, T. B., Li, G. M., and Zeng, Q. D., 2008, Prediction of hidden gold orebodies in depleted mines by the Stratagem EH4 system: Progress in Geophysics, 23(1), 559 - 567.
[16] Shen, P., Shen, Y. C., Liu, T. B., Li, G. M., Qing, K. Z., and Zeng, Q. D., 2007, Application of stratagem EH4 system to prediction of hidden ore bodies: Mineral Deposits, 26(1), 71 - 77.
[17] Xu, Z. W., Xu, W. Y., Qiu, J. S., Fu, B., and Niu, C. Y., 2000, An investigation of the age and geological-geochemical characteristics of quartz diorite porphyry in Shaxi porphyry copper(gold) deposit: Geology and Prospecting, 36(4), 36 - 39.
[1] 王珺璐,林品荣,王萌,李荡,李建华. 类中梯装置三维大功率激电成像技术研究[J]. 应用地球物理, 2017, 14(2): 291-300.
[2] 蔡希玲, 刘学伟, 李虹, 吕英梅. 基于空间子集的地震数据分析方法[J]. 应用地球物理, 2009, 6(4): 354-362.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司