APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (3): 247-260    DOI: 10.1007/s11770-012-0335-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
由重力异常计算重力全梯度张量的余弦变换法
蒋甫玉1,黄岩2,燕轲2
1. 河海大学,地球科学与工程学院,南京 210098
2. 江苏省地质勘查技术院,南京 210048
Full gravity gradient tensors from vertical gravity by cosine transform
Jiang Fu-Yu1, Huang Yan2, and Yan Ke2
1. Hohai University, School of Earth Sciences and Engineering, Nanjing 210098, China.
2. Geology Exploration Technology Institute of Jiangsu Province, Nanjing 210048, China.
 全文: PDF (3421 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在傅里叶变换的基础上,提出在只有重力异常的情况下,利用余弦变换计算重力全梯度张量,并探讨了重力异常信号中含噪声时,余弦变换法计算的梯度张量的精度问题。通过对二维无限长均匀水平圆柱体及三维“Y”型岩脉模型梯度张量的计算表明,在原始重力异常中加入噪声与否的情况下,余弦变换法的计算结果均要优于传统的傅里叶变换法,特别是从均方差上看,余弦变换法的精度提高了近2~3倍。在实际应用中,实现了对黑龙江虎林盆地的重力梯度张量计算,计算结果表明,由余弦变换获得的重力梯度张量与傅里叶变换法的结果具有较高的一致性,但余弦变换法获得的梯度张量异常更加平滑,表明其受噪声的影响更小,能够更好地反映断裂的分布特征。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋甫玉
黄岩
燕轲
关键词重力异常   重力梯度张量   傅里叶变换   余弦变换     
Abstract: We present a method to calculate the full gravity gradient tensors from pre-existing vertical gravity data using the cosine transform technique and discuss the calculated tensor accuracy when the gravity anomalies are contaminated by noise. Gravity gradient tensors computation on 2D infi nite horizontal cylinder and 3D “Y” type dyke models show that the results computed with the DCT technique are more accurate than the FFT technique regardless if the gravity anomalies are contaminated by noise or not. The DCT precision has increased 2 to 3 times from the standard deviation. In application, the gravity gradient tensors of the Hulin basin calculated by DCT and FFT show that the two results are consistent with each other. However, the DCT results are smoother than results computed with FFT. This shows that the proposed method is less affected by noise and can better refl ect the fault distribution.
Key wordsgravity anomaly   gravity gradient tensor   Fourier transform   cosine transform   
收稿日期: 2012-06-22;
基金资助:

本研究由河海大学引进人才科研启动基金项目(2084/40801136)和中央高校基本科研业务费专项资金(2009B12514)资助。

引用本文:   
蒋甫玉,黄岩,燕轲. 由重力异常计算重力全梯度张量的余弦变换法[J]. 应用地球物理, 2012, 9(3): 247-260.
JIANG Fu-Yu,HUANG Yan,YAN Ke. Full gravity gradient tensors from vertical gravity by cosine transform[J]. APPLIED GEOPHYSICS, 2012, 9(3): 247-260.
 
[1] Ahmed, N., Natarjan, T., and Rao, K. R. 1974, Discrete cosine transform: IEEE Trans Compute, 23(1), 90 - 93.
[2] Bell, R., Anderson, R., and Pratson, L., 1997, Gravity gradiometry resurfaces: The Leading Edge, 16(1), 55 - 60.
[3] Bell, R., 1998. Gravity gradiometry: Scientific American, 278(6), 74 - 79.
[4] Blakely, R. J., and Simpson, R. W., 1986, Approximating edges of source bodies from magnetic or gravity anomalies: Geophysics, 51(7), 1494 - 1498.
[5] Cooper, G. R. J., and Cowan, D. R., 2003, The meter reader—Sunshading geophysical data using fractional order horizontal gradients: The Leading Edge, 22(3), 204 - 205.
[6] Cordell, L., and Grauch, V. J. S., 1982, Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico: 52th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 246 - 247.
[7] ———, 1985, Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico: in Hinze, W. J., Ed., Utility of Regional Gravity and Magnetic Maps, Soc. Expl. Geophys., 181 - 197.
[8] Cvetkovic, Z., and Popovic, M. V., 1992, New fast algorithms for the computation discrete cosine and sine transform: IEEE Trans. Signal Process., 40(8), 2083 - 2086.
[9] Eaton, D., and Vasudevan, K., 2004, Skeletonization of aeromagnetic data: Geophysics, 69(2), 478 - 488.
[10] Fedi, M., and Florio, G., 2001, Detection of potential fields source boundaries by enhanced horizontal derivative method: Geophysical Prospecting, 49(1), 40 - 58.
[11] FitzGerald, D., Reid, A., and McInerney, P., 2004, New discrimination techniques for Euler deconvolution: Computers & Geosciences, 30(5), 461 - 469.
[12] Gunn, P. J., 1975, Linear transformations of gravity and magnetic fields: Geophysical Prospecting, 23(2), 300 - 312.
[13] Gupta, V. K., and Ramani, N., 1982, Optimum second vertical derivatives in geologic mapping and mineral exploration: Geophysics, 47(12), 1706 - 1715.
[14] Hansen, R. O., and Suciu, L., 2002, Multiple-source Euler deconvolution: Geophysics, 67(2), 525 - 535.
[15] Hu, G. S., 2003, Digital signal processing: Tsinghua University Press, Beijing.
[16] Jain, A. K., 1976, A fast Karhunen-Loeve transform for a class of stochastic processes: IEEE Trans. Commun., 24(9), 1023 - 1029.
[17] Jekeli, C., 1988. The gravity gradiometer survey system (GGSS): EOS Transactions of the American Geophysical Union, 69(8), 116 - 117.
[18] Li, Y., and Oldenburg, D. W., 1998, 3D inversion of gravity data: Geophysics, 63(1), 109 - 119.
[19] Luo, X. K., and Guo, S. Y., 1991, Applied geophysics course: Geological Publishing House, Beijing.
[20] Mickus, K. L. and Hinojosa, J. H., 2001, The complete gravity gradient tensor derived from the vertical component of gravity: A Fourier transform technique: Journal of Applied Geophysics, 46(3), 159 - 174.
[21] Montana, C. J., Mickus, K. L., and Peeples, W. J., 1992, Program to calculate the gravitational field and gravity gradient tensor resulting from a system of right rectangular prisms: Computers & Geosciences, 18(5), 587 - 602.
[22] Mu, S. M., Shen, N. H., and Sun, Y. S., 1990, Method of regional geophysical data processing and application: Changchun, Jilin Science and Technology Press.
[23] Nabighian, M. N., and Hansen, R. O., 2001, Unification of Euler and Werner deconvolution in three dimensions via the generalized Hilbert transform: Geophysics, 66(6), 1805 - 1810.
[24] Pawlowski, B., 1998, Gravity gradiometry in resource exploration: The Leading Edge, 17, 51 - 52.
[25] Pearson, W. C., 2001, Aeromagnetic imaging of fractures in a basin centered gas play: AAPG Explorer, 22(1), 52 - 55.
[26] Ravat, D., Wang, B., Wildermuth, E., and Taylor, P. T., 2002, Gradients in the interpretation of satellite-altitude magnetic data: An example from central Africa: Journal of Geodynamics, 33(1-2), 131 - 142.
[27] Vasco, D. W., 1989, Resolution and variance operators of gravity and gravity gradiometry: Geophysics, 54(7), 889 - 899.
[28] Wang, W. Y., Pan, Y., and Qiu, Z. Y., 2009, A new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative for potential field data: Applied Geophysics, 6(3), 226 - 233.
[29] Wang, W. Y., Zhang, G. C., and Liang, J. S., 2010, Spatial variation law of vertical derivative zero points for potential field data: Applied Geophysics, 7(3), 197 - 209.
[30] Wu, X. Z., Liu, G. H., Xue, G. Q., Wang, Y. J., and Bai, D. M., 1987, Analysis of method and application on Fourier transform and potential field spectrum: Surveying and Mapping Press, Beijing.
[31] Zeng, H. L., Zhang, Q. H., and Liu, J., 1994, Location of secondary faults from cross-correlation of the second vertical derivative of gravity anomalies: Geophysical Prospecting, 42(8), 841 - 854.
[32] Zhang, F. X., Meng, L. S., Zhang, F. Q., Liu, C., Wu, Y. G., and Du, X. J., 2006, A new method for spectral analysis of the potential field and conversion of derivative of gravity-anomalies: Cosine transform: Chinese Journal of Geophysics, 49(1), 244 - 248.
[33] Zhang, F. X., Zhang, F. Q., Meng, L. S., and Liu, C., 2007, Magnetic potential spectrum analysis and calculating method of magnetic anomaly derivatives based on discrete cosine transform: Chinese Journal of Geophysics, 50(1), 282 - 290.
[34] Zhdanov, M. S., Ellis, R., and Mukherjee, S., 2004, Three-dimensional regularized focusing inversion of gravity gradient tensor component data: Geophysics, 69(4), 925 - 937.
[1] 戴世坤,赵东东,张钱江,李昆,陈轻蕊,王旭龙. 基于泊松方程的空间波数混合域重力异常三维数值模拟[J]. 应用地球物理, 2018, 15(3-4): 513-523.
[2] 曹中林,曹俊兴,巫芙蓉,何光明,周强,吴育林. 基于分数阶傅里叶变换的混合Cadzow滤波法[J]. 应用地球物理, 2018, 15(2): 271-279.
[3] 徐小红, 屈光中, 张洋, 毕云云, 汪金菊. 基于形态成分分析地震信号二维域面波分离方法研究[J]. 应用地球物理, 2016, 13(1): 116-126.
[4] 杨亚鹏, 吴美平, 唐刚. 基于L1范数凸二次规划方法的航空重力测量数据稀疏重构[J]. 应用地球物理, 2015, 12(2): 147-156.
[5] 葛子建, 李景叶, 潘树林, 陈小宏. 一种快速收敛的抗噪POCS地震数据重构方法[J]. 应用地球物理, 2015, 12(2): 169-178.
[6] 袁园, 黄大年, 余青露, 耿美霞. 全张量重力梯度数据滤波处理[J]. 应用地球物理, 2013, 10(3): 241-250.
[7] 蒋甫玉, 高丽坤. 基于改进的小子域滤波的重力异常及重力梯度张量边缘增强[J]. 应用地球物理, 2012, 9(2): 119-130.
[8] 唐刚, 马坚伟, 杨慧珠. 基于学习型超完备字典的地震数据去噪[J]. 应用地球物理, 2012, 9(1): 27-32.
[9] 胥德平, 郭科. 分数阶S变换:第一部分,理论[J]. 应用地球物理, 2012, 9(1): 73-79.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司