APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2025, Vol. 22 Issue (2): 354-364    DOI: 10.1007/s11770-024-1156-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
矿山采动过程震动信号人工智能自动分类方法研究
戴锐,邵婕,*,张达,冀虎,曾翌
1. 中国科学院地质与地球物理研究所,中国科学院油气资源研究重点实验室,北京,100029;2. 中国科学院大学,北京,100029;3. 矿冶科技集团有限公司,北京,102628;4. 中国-南非矿产资源开发利用联合研究中心,北京,102628;5. 中国-南非矿产资源可持续开发利用“一带一路”联合实验室,北京,102628
Artificial intelligence method for automatic classification of vibration signals in the mining process
Rui Dai, Jie Shao,*, Da Zhang, Hu Ji, and Yi Zeng
1. Key Laboratory of Deep Petroleum Intelligent Exploration and Development, Institute of Geology and Geophysics,Chinese Academy of Sciences, Beijing, 100029 2. University of Chinese Academy of Sciences, Beijing, 100029 3. BGRIMM Technology Group Co., Ltd., Beijing, 102628 4. China - South Africa Joint Research Center for Exploitation and Utilization of Mineral Resources, Beijing, 102628 5. China - South Africa BRI Joint Laboratory for Sustainable Development and Utilization of Mineral Resources, Beijing,102628
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 深井开采造成的地压灾害风险与日俱增,基于微震监测技术的地压监测预警发挥着越来越重要的作用。微震信号、爆破信号、噪声信号等深部矿山震动信号的实时识别与正确分类直接影响微震监测预警、深井岩体稳定性分析以及巷道支护的时效性和准确性,对深部矿山安全生产以及地压灾害防控具有重要意义。本文提出一种矿山震动信号人工智能自动分类网络模型,在常规卷积神经网络的基础上,引入了长短时记忆网络(LSTM)与注意力机制,实现了微震信号、爆破信号、噪声信号的自动分类。LSTM的加入使得模型能够深度捕捉时序矿山震动数据间的相关性,而注意力机制的引入则进一步强化了模型对数据中关键特征信息的聚焦能力。为了验证所提模型的有效性,采用2022年广西珊瑚钨矿微震监测系统采集的480526条波形数据进行训练、验证及测试。测试结果显示,与人工分类的精度相比,本文提出的矿山震动信号人工智能自动分类方法的识别精度较高,其识别准确率达到92.21%。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词深井开采   微震监测   矿山震动信号分类   长短时记忆网络   注意力机制     
Abstract: The increasing risk of ground pressure disasters resulting from deep well mining highlights the urgent need for advanced monitoring and early warning systems. Ground pressure monitoring, supported by microseismic technology, plays a pivotal role in ensuring mine safety by enabling real-time identification and accurate classification of vibration signals such as microseismic signals, blasting signals, and noise. These classifications are critical for improving the efficacy of ground pressure monitoring systems, conducting stability analyses of deep rock masses, and implementing timely and precise roadway support measures. Such eff orts are essential for mitigating ground pressure disasters and ensuring safe mining operations. This study proposes an artificial intelligence-based automatic classification network model for mine vibration signals. Based on conventional convolutional neural networks, the proposed model further incorporates long short-term memory (LSTM) networks and attention mechanisms. The LSTM component eff ectively captures temporal correlations in time-series mining vibration data, while the attention mechanism enhances the models’ ability to focus on critical features within the data. To validate the effectiveness of our proposed model, a dataset comprising 480,526 waveform records collected in 2022 by the microseismic monitoring system at Guangxi Shanhu Tungsten Mine was used for training, validation, and testing purposes. Results demonstrate that the proposed artificial intelligence-based classification method achieves a higher recognition accuracy of 92.21%, significantly outperforming traditional manual classification methods. The proposed model represents a significant advancement in ground pressure monitoring and disaster mitigation.
Key words deep mining    microseismic monitoring    classification of mine vibration signals    long short-term memory    attention mechanism   
收稿日期: 2024-09-03;
基金资助:本工作得到:国家自然科学基金优秀青年科学基金项目(资助号:42025403);国家重点研发计划(2021YFA0716800);国家重点研发计划(2022YFC2903804) 的资助。
通讯作者: 邵婕(shaojie@mail.iggcas.ac.cn)     E-mail: shaojie@mail.iggcas.ac.cn
作者简介: 戴锐,中国科学院地质与地球物理研究所博士研究生?(在读),主要研究方向为矿山微震监测与预警
引用本文:   
. 矿山采动过程震动信号人工智能自动分类方法研究[J]. 应用地球物理, 2025, 22(2): 354-364.
. Artificial intelligence method for automatic classification of vibration signals in the mining process[J]. APPLIED GEOPHYSICS, 2025, 22(2): 354-364.
 
没有本文参考文献
[1] 潘海侠,魏兴云*,王才志,韩林枫,王浩,王洪强,赵晗. 基于语义分割的测井地层对比算法研究[J]. 应用地球物理, 2024, 21(4): 650-666.
[2] Sergey Yaskevich, Georgy Loginov, Anton Duchkov, Alexandr Serdukov. 强各向异性介质的微地震数据反演的陷阱[J]. 应用地球物理, 2016, 13(2): 326-332.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司