APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2025, Vol. 22 Issue (2): 365-382    DOI: 10.1007/s11770-024-1124-5
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
利用机器学习重建GRACE总蓄水量变化及其准确性评估
苏勇*,杨逸飞,杨翼宇
1. 西南石油大学土木工程与测绘学院,成都,四川,610500;2. 武汉大学测绘学院,武汉,湖北,430079;3. 湖北珞珈实验室,武汉,湖北,430079;4. 西藏自治区卫星遥感与应用重点实验室,拉萨,西藏,851400
Learning-based Reconstruction of GRACE Data Based on Changes in Total Water Storage and Its Accuracy Assessment
Su Yong,*, Yang Yi-Fei, Yang Yi-Yu1
1. School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China 2. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China 3. Hubei Luojia Laboratory, Wuhan 430079, China 4. Xizang Autonomous Region Key Laboratory of Satellite Remote Sensing and Application, Lhasa 851400, China
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 自2 0 0 2 年4 月以来, 重力恢复和气候实验卫星(G R A C E)提供了覆盖全球的每月总储水量异常(TWSA),但GRACE观测数据存在缺失而导致TWSA不连续。本研究提出了一种无需水文模型数据的基于机器学习的组合建模方法。本研究将全球11个主要区域的TWSA时间序列数据分为训练集和测试集,使用自回归求和移动平均模型(ARIMA)、长短期记忆网络模型(LSTM)和ARIMA-LSTM组合模型,将模型的预测值与GRACE观测结果进行比较,并使用Nash-Sutcliffe效率系数(NSE)、Pearson相关系数(CC)、均方根误差(RMSE)、归一化RMSE(NRMSE)和平均绝对百分比误差等五个指标评估模型的准确性。结果表明:在流域尺度上,ARIMALSTM模型的CC、NSE和NRMSE平均值分别为0.93、0.83和0.12。在网格尺度上,本研究比较了亚马逊河和伏尔加河流域5个指标的空间分布和累积分布曲线。ARIMALSTM模型在亚马逊河和伏尔加河流域的CC和NSE平均值分别为0.89和0.61以及0.92和0.61,优于ARIMA模型(分别为0.86和0.48以及0.88和0.46)和LSTM模型(分别是0.80和0.41以及0.89和0.31)。在ARIMA-LSTM模型中,两个流域NSE>0.50的网格单元比例分别为63.3%和80.8%,而在ARIMA模型中为54.3%和51.3%,在LSTM模型中为53.7%和43.2%。ARIMA-LSTM模型显著提高了预测的NSE值,同时保证了在流域尺度和格网尺度上重建的GRACE数据均有较高的Pearson相关系数,有助于填充时变重力场模型中的缺失数据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词总水储量异常   时变重力场模型   ARIMA    LSTM    组合模型   时间序列预测     
Abstract: Since April 2002, the Gravity Recovery and Climate Experiment Satellite (GRACE) has provided monthly total water storage anomalies (TWSAs) on a global scale. However, these TWSAs are discontinuous because some GRACE observation data are missing. This study presents a combined machine learningbased modeling algorithm without hydrological model data. The TWSA time-series data for 11 large regions worldwide were divided into training and test sets. Autoregressive integrated moving average (ARIMA), long short-term memory (LSTM), and an ARIMA–LSTM combined model were used. The model predictions were compared with GRACE observations, and the model accuracy was evaluated using fi ve metrics: the Nash–Sutcliff e effi ciency coeffi cient (NSE), Pearson correlation coeffi cient (CC), root mean square error (RMSE), normalized RMSE (NRMSE), and mean absolute percentage error. The results show that at the basin scale, the mean CC, NSE, and NRMSE for the ARIMA–LSTM model were 0.93, 0.83, and 0.12, respectively. At the grid scale, this study compared the spatial distribution and cumulative distribution function curves of the metrics in the Amazon and Volga River basins. The ARIMA–LSTM model had mean CC and NSE values of 0.89 and 0.61 and 0.92 and 0.61 in the Amazon and Volga River basins, respectively, which are superior to those of the ARIMA model (0.86 and 0.48 and 0.88 and 0.46, respectively) and the LSTM model (0.80 and 0.41 and 0.89 and 0.31, respectively). In the ARIMA–LSTM model, the proportions of grid cells with NSE > 0.50 for the two basins were 63.3% and 80.8%, while they were 54.3% and 51.3% in the ARIMA model and 53.7% and 43.2% in the LSTM model. The ARIMA–LSTM model significantly improved the NSE values of the predictions while guaranteeing high CC values in the GRACE data reconstruction at both scales, which can aid in fi lling in discontinuous data in temporal gravity fi eld models.
Key wordstotal water storage anomalies    temporal gravity field model    ARIMA    LSTM    combined model,time-series prediction   
收稿日期: 2024-04-25;
基金资助:本研究得到国家自然科学基金?(编号:42374004)、湖北珞珈实验室开放基金?(编号:220100045)及四川省自然科学基金?(编号:2022NSFSC1047)的资助。
通讯作者: 苏勇 (Email: suyongme@foxmail.com).     E-mail: suyongme@foxmail.com
作者简介: 苏勇,博士毕业于西南交通大学大地测量学与测量工程专业,现为西南石油大学土木工程与测绘学院副教授,主要研究方向为卫星重力测量数据处理及高精度重力场模型计算理论与技术。
引用本文:   
. 利用机器学习重建GRACE总蓄水量变化及其准确性评估[J]. 应用地球物理, 2025, 22(2): 365-382.
. Learning-based Reconstruction of GRACE Data Based on Changes in Total Water Storage and Its Accuracy Assessment[J]. APPLIED GEOPHYSICS, 2025, 22(2): 365-382.
 
没有本文参考文献
[1] 高秀鹤,熊盛青,*,孙思源,*,曾昭发,于长春. 构建组合模型加权函数并应用于航磁数据三维反演建模[J]. 应用地球物理, 2025, 22(2): 342-353.
[2] 蔡寅,Mei-Ling Shyu,涂钥轩,滕云田,胡星星,. 基于LSTM-RNN 的地震前兆数据异常检测新方法*[J]. 应用地球物理, 2019, 16(3): 257-268.
[3] 徐梦龙, 杨长保, 吴燕冈, 陈竞一, 郇恒飞. 利用各方向均方差相关系数进行位场边界检测[J]. 应用地球物理, 2015, 12(1): 23-34.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司