APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (4): 598-607    DOI: 10.1007/s11770-016-0588-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于图论多分辨率聚类分析的测井岩相识别研究——以阿姆河盆地台内滩气田为例
田雨1,2,徐洪3,张兴阳2,王红军2,郭同翠2,张良杰2,龚幸林4
1. 中国矿业大学(北京)地球科学与测绘工程学院,北京 100083;
2. 中国石油勘探开发研究院,北京 100083;
3. 中国石油天然气勘探开发公司,北京 100034;
4. 中国石油阿姆河天然气公司,土库曼斯坦阿什哈巴德 744036
Multi-resolution graph-based clustering analysis for lithofacies identification from well log data: Case study of intraplatform bank gas fields, Amu Darya Basin
Tian Yu1,2, Xu Hong3, Zhang Xing-Yang2, Wang Hong-Jun2, Guo Tong-Cui2, Zhang Liang-Jie2, and Gong Xing-Lin4
1. College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China.
2. Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China.
3. China National Oil and Gas Exploration and Development Corporation, Beijing 100034, China.
4. Amu Darya Gas Company, CNPC (Turkmenistan), Ashkhabad 744036, Turkmenistan.
 全文: PDF (1349 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 以阿姆河盆地右岸地区碳酸盐岩台内滩气田为例,运用基于图论的多分辨率聚类分析法开展了以常规测井资料为基础的测井相聚类及岩相定量预测研究。该方法不需要分析数据体的结构及聚类数等先验知识为指导,能够自动优选最佳聚类个数,并允许按照实际需求控制聚类级别,进行聚类合并。依据岩芯资料岩相识别及测井相标定结果,本文最终建立了包含5个聚类的测井相划分模型及岩相定量解释图版,其中,聚类测井相1~5分别对应于泻湖泥、石膏坪、滩间、低能滩及高能滩,取芯段符合率达85%以上,能够较好的运用于非取芯段岩相预测研究。据此,我们进行了连续的聚类测井相划分及岩相预测,并对层序地层格架内岩相分布及物性特征进行了分析。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词基于图论的多分辨率聚类分析法   测井相   岩相   台内滩气田   阿姆河盆地     
Abstract: In this study, we used the multi-resolution graph-based clustering (MRGC) method for determining the electrofacies (EF) and lithofacies (LF) from well log data obtained from the intraplatform bank gas fields located in the Amu Darya Basin. The MRGC could automatically determine the optimal number of clusters without prior knowledge about the structure or cluster numbers of the analyzed data set and allowed the users to control the level of detail actually needed to define the EF. Based on the LF identification and successful EF calibration using core data, an MRGC EF partition model including five clusters and a quantitative LF interpretation chart were constructed. The EF clusters 1 to 5 were interpreted as lagoon, anhydrite flat, interbank, low-energy bank, and high-energy bank, and the coincidence rate in the cored interval could reach 85%. We concluded that the MRGC could be accurately applied to predict the LF in non-cored but logged wells. Therefore, continuous EF clusters were partitioned and corresponding LF were interpreted, and the distribution and petrophysical characteristics of different LF were analyzed in the framework of sequence stratigraphy.
Key wordsMulti-resolution graph-based clustering method   electrofacies   lithofacies   intraplatform bank gas fields   Amu Darya Basin   
收稿日期: 2016-05-12;
基金资助:

本研究由国家重大科技专项(编号:2011ZX05029-003)和中国石油天然气集团公司科学研究与技术开发项目(编号:2013D-0904)联合资助。

引用本文:   
. 基于图论多分辨率聚类分析的测井岩相识别研究——以阿姆河盆地台内滩气田为例[J]. 应用地球物理, 2016, 13(4): 598-607.
. Multi-resolution graph-based clustering analysis for lithofacies identification from well log data: Case study of intraplatform bank gas fields, Amu Darya Basin[J]. APPLIED GEOPHYSICS, 2016, 13(4): 598-607.
 
[1] Ajil, K. S., Thapliyal, P. K., Shukla, M. V., Pal, P. K., Joshi, P. C., and Navalgund, R. R., 2010, A new technique for temperature and humidity profile retrieval from infrared-sounder observations using the adaptive neuro-fuzzy inference system: IEEE Transactions on Geoscience and Remote Sensing, 48(4), 1650−1659.
[2] Alizadeh, B., Najjar, S., and Kadkhodaie-Ilkhchi, A., 2012, Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data: A case study of the South Pars Gas Field, Persian Gulf, Iran: Computers & Geosciences, 45(4), 261−269.
[3] Asante, J., and Kreamer, D., 2015, A new approach to identify recharge areas in the Lower Virgin River Basin and surrounding basins by multivariate statistics: Mathematical Geosciences, 47(7), 819−842.
[4] Canet, C., Arana, L., González-Partida, E., Pi, T., Prol-Ledesma, R. M., and Franco, S. I., 2010, A statistics-based method for the short-wave infrared spectral analysis of altered rocks: An example from the Acoculco Caldera, Eastern Trans-Mexican Volcanic Belt: Journal of Geochemical Exploration, 105(1−2), 1−10.
[5] Chai, H., Li, N., Xiao, C. W., Liu, X. L., Li, D. L., Wang, C. Z., and Wu, D. C., 2009, Automatic discrimination of sedimentary facies and lithologies in reef-bank reservoirs using borehole image logs: Applied Geophysics, 6(1), 17−29.
[6] Fiedler, M., 1973, Algebraic connectivity of graphs: Czechoslovak Mathematical Journal, 23(2), 298−305.
[7] Fukunaga, K., and Hostetler, L. D., 1975, The estimation of the gradient of a density function, with applications in pattern recognition: IEEE Transactions on Information Theory, 21(1), 32−40.
[8] Gillis, N., Kuang, D., and Park, H., 2015, Hierarchical clustering of hyperspectral images using rank-two nonnegative matrix factorization: IEEE Transactions on Geoscience & Remote Sensing, 53(4), 2066−2078.
[9] Hatampour, A., Schaffie, M., and Jafari, S., 2015, Hydraulic flow units, depositional facies and pore type of Kangan and Dalan Formations, South Pars Gas Field, Iran: Journal of Natural Gas Science and Engineering, 23, 171−183.
[10] Jain, A. K., Murty, M. N., and Flynn, P. J., 1999, Data clustering: A review: ACM Computing Surveys, 31(3), 264−323.
[11] Khoshbakht, F., and Mohammadnia, M., 2012, Assessment of clustering methods for predicting permeability in a heterogeneous carbonate reservoir: Journal of Petroleum Science and Technology, 2(2), 50−57.
[12] Lü, G. X., Liu, H. N., Deng, M. M., Wu, L., Zhang, B. Q., Zhang, X. Y., and Fei, H. Y., 2014, Large scale sub-salt carbonate gas fields exploration and development in the Amu Darya Right Bank Area: Science Press, China, 1−378.
[13] MacQueen, J., 1967, Some Methods for classification and Analysis of Multivariate Observations, in LeCam, L. M., and Neyman, J., Eds., Proceedings of the 5th Berkeley Symposium on Mathematics Statistic and Probability, Volume 1: Statistics, University of California Press, USA, 281−297.
[14] Nouri-Taleghani, M., Kadkhodaie-llkhchi, A., and Karimi-Khaledi, M., 2015, Determining hydraulic flow units using a hybrid neural network and multi-resolution graph-based clustering method: Case study from South Pars Gasfield, Iran: Journal of Petroleum Geology, 38(2), 177−191.
[15] Pabakhsh, M., Ahmadi, K., Riahi, M. A., and Shahri, A. A., 2012, Prediction of PEF and LITH logs using MRGC approach: Life Science Journal, 9(4), 974−982.
[16] Pantopoulos, G., Vakalas, I., Maravelis, A., and Zelilidis, A., 2013, Statistical analysis of turbidite bed thickness patterns from the Alpine fold and thrust belt of western and southeastern Greece: Sedimentary Geology, 294(2), 37−57.
[17] Sfidaria, E., Kadkhodaie-Ilkhchib, A., Rahimpour-Bbonaba, H., and Soltania, B., 2014, A hybrid approach for litho-facies characterization in the framework of sequence stratigraphy: A case study from the South Pars gas field, the Persian Gulf basin: Journal of Petroleum Science and Engineering, 121(2), 87−102.
[18] Tang, H., Meddaugh, W. S., and Toomey N., 2011, Using an artificial-neural-network method to predict carbonate well log facies Successfully: SPE Reservoir Evaluation & Engineering, 14(1), 35−44.
[19] Tian, Y., Zhang, X. Y., Zhu, G. W., Zhang, L. J., Wu, Lei., Guo, T. C., Zhang, H. W., and Yu, X. W., 2016, Controlling effects of paleogeomorphology on intraplatform shoal reservoirs distribution and gas reservoirs characteristics: Taking intraplatform shoal gas fields of the Amu Darya Basin as examples: Natural Gas Geoscience, 27(2), 320−329.
[20] Ward, W. O. C., Wilkinson, P. B., Chambers, J. E., Oxby, L. S., and Bai, L., 2014, Distribution-based fuzzy clustering of electrical resistivity tomography images for interface detection: Geophysical Journal International, 197(1), 310−321.
[21] Whitcomb, K. Z., Ryan, D. P., Gelfand, M. P., and Orden A. V., 2013, Blinking statistics of small clusters of semiconductor nanocrystals: The Journal of Physical Chemistry C, 117(48), 25761−25768.
[22] Ye, S. J., and Rabiller, P., 2000, A new tool for electro-facies analysis: Multi-Resolution Graph Based Clustering: SPWLA 41st Annual Logging Symposium, Dallas, Texas, USA, Jun 4−7.
[1] 闫建平,何旭,胡钦红,梁强,唐洪明,冯春珍,耿斌. 湖相泥页岩岩相类型划分及测井精细识别方法——以济阳坳陷沾化凹陷沙三下亚段为例[J]. 应用地球物理, 2018, 15(2): 151-164.
[2] 郭同翠,王红军,穆龙新,张兴阳,马智,田雨,李昊宸. 盐膏岩组分与岩石速度关系模版研究——以阿姆河盆地盐膏岩为例[J]. 应用地球物理, 2016, 13(3): 459-468.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司