APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (4): 587-597    DOI: 10.1007/s11770-016-0586-5
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
中心回线TEM法探测多层积水采空区的可行性
闫述1,薛国强2,邱卫忠3,李海2,钟华森2
1. 江苏大学计算机科学与通信工程学院,镇江 212013;
2. 中国科学院矿产资源重点实验室,中国科学院地质与地球物理研究所,北京 100029;
3. 山西省煤炭地质115 勘查院,大同 037003
Feasibility of central loop TEM method for prospecting multilayer water-filled goaf
Yan Shu1, Xue Gou-Qiang2, Qiu Wei-Zhong3, Li Hai2, and Zhong Hua-Sen2
1. School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China.
2. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
3. Shanxi Coal Geological Exploration Institute 115, Datong 037003, China.
 全文: PDF (807 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 随着煤矿的深部开采,多层积水采空区探测成为煤田水文物探工作的新内容。中心回线瞬变电磁(简称TEM)法因场结构与地层的耦合关系,对低阻层探测有利。但低阻层的屏蔽作用不仅使得探测同样的深度需要更长的观测时间,而且还会减弱下伏地层的异常响应。本文通过直接时域数值模拟和水平分层大地的模型正演,估算了探测目的层所需要的时间长度,根据噪声对观测数据造成的影响,给出了多层积水采空区可分辨的标准。山西大同达子沟煤矿水文勘探中获得的TEM实测曲线,表现了对多层积水采空区的探测能力。在实测曲线的定量反演解释中,利用电测井资料作为初始参数进行定量反演,约束了煤系薄层的等值性。所推断的三层和两层积水采空区,为钻孔所证实。研究结果表明,当观测时间有足够的长度、下伏地层的异常显示大于观测误差,中心回线TEM法探测多层采空区积水是可行性的。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词中心回线TEM法   多层积水采空区探测   低阻屏蔽层   数值与理论分析   观测时长   观测误差   可分辨标准     
Abstract: With deep mining of coal mines, prospecting multilayer water-filled goaf has become a new content that results from geophysical exploration in coalfields. The central loop transient electromagnetic (TEM) method is favorable for prospecting conductive layers because of the coupling relationship between its field structure and formation. However, the shielding effect of conductive overburden would not only require a longer observation time when prospecting the same depth but also weaken the anomalous response of underlying layers. Through direct time domain numerical simulation and horizontal layered earth forward modeling, this paper estimates the length of observation time required to prospect the target, and the distinguishable criterion of multilayer water-filled goaf is presented with observation error according to the effect of noise on observation data. The observed emf curves from Dazigou Coal Mine, Shanxi Province can distinguish multilayer water-filled goaf. In quantitative inversion interpretation of observed curves, using electric logging data as initial parameters restrains the equivalence caused by coal formation thin layers. The deduced three-layer and two-layer water-filled goafs are confirmed by the drilling hole. The result suggests that when observation time is long enough and with the anomalous situation of underlying layers being greater than the observation error, the use of the central loop TEM method to prospect a multilayer water-filled goaf is feasible.
Key wordscentral loop TEM method   prospecting multilayer water-filled goaf   conductive shielding layer   numerical and theoretical analysis   length of observation time   observation error   distinguishable criterion   
收稿日期: 2016-08-12;
基金资助:

本研究由自然科学基金(编号:41374129)、山西省科技攻关项目(编号:20100321066)和国家重大科研装备研制项目(编号:ZDYZ2012-1-05-04)联合资助。

引用本文:   
. 中心回线TEM法探测多层积水采空区的可行性[J]. 应用地球物理, 2016, 13(4): 587-597.
. Feasibility of central loop TEM method for prospecting multilayer water-filled goaf[J]. APPLIED GEOPHYSICS, 2016, 13(4): 587-597.
 
[1] Asten, M. W., and Duncan, A. C., 2012, The quantitative advantages of using B-field sensors in time-domain EM measurement for mineral exploration and unexploded ordnance search: Geophysics, 77(4), WB137−WB148.
[2] Barsukov, P. O., and Fainberg, E. B., 2014, Transient marine electromagnetics in shallow water: A sensitivity and resolution study of the vertical electric field at short ranges: Geophysics, 79(1), E39−E49.
[3] Christensen, N. B., 2014, Sensitivity functions of transient electromagnetic methods: Geophysics, 79(4), E167−E182.
[4] Desmarais, J. K., and Smith, R. S., 2016, Approximate semianalytical solutions for the electromagnetic response of a dipping-sphere interacting with conductive overburden: Geophysics, 81(4), E265− E277.
[5] Djanni, A. T., Ziolkowski, A., and Wright, D., 2016, Electromagnetic induction noise in a towed electromagnetic streamer: Geophysics, 81(3), E187− E199.
[6] Everett, M. E., Benavides, A., and Pierce, C. J., 2005, An experiment study of the time-domain electromagnetic response of a buried conductive plate: Geophysics, 70(1), G1−G7.
[7] Farquharson, C. G., Duckworth, K., and Oldenburg, D. W., 2006, Comparison of integral equation and physical scale modeling of the electromagnetic responses of models with large conductivity contrasts: Geophysics, 71(4), G169−G177.
[8] Fernando, A., Monteiro, S., and Hesham M. E., 2011, Quasi-2D inversion of DCR and TDEM data for shallow investigations: Geophysics, 76(4), F239−F250.
[9] Hesham, E. K., and Abdalla, O., 2015, Application of time-domain electromagnetic method in mapping saltwater intrusion of a coastal alluvial aquifer, North Oman:Journal of Applied Geophysics,115, 59−64.
[10] Hohmann, G. W., and Raiche, A. P., 1992, Inversion of controlled source electromagnetic data. In Nabighian, M. N., Eds., Electromagnetic methods in applied geophysics Volume 1, Theory (in Chinese): Geological Publishing House, Beijing, 452−486.
[11] Kaufman, A. A., and Keller, G. V., 1983, Frequency and transient soundings: Elsevier Science Publishing Company Inc., New York, 213.
[12] Li, X., Xue, G. Q., and Song, J. P., 2005, Application of the adaptive shrinkage genetic algorithm in the feasible region to TEM conductive thin layer inversion: Applied Geophysics, 2(4), 204−211.
[13] MacLennan, K., and Li, Y., 2011, Signal extraction from 4D transient electromagnetic surveys using the equivalent source method: Geophysics, 76(3), F147−F155.
[14] Nyboe, N. S., and Sorensen. K., 2012, Noisereduction inTEM: Presenting a bandwidth- and sensitivity-optimized parallel recording setup and methods for adaptive synchronous detection: Geophysics, 77(3), E203−E212.
[15] Oristaglio, M. L., and Hohmann, G. W., 1984, Diffusion of electromagnetic fields into a two-dimensional earth: A finite-difference approach: Geophysics, 49(7), 870−894.
[16] Shi, X. X., 2005. Research on shielding of low-resistivity layer in prospecting by transient electromagnetic method (in Chinese): PhD Thesis, China Coal Research Institute CCRI, Beijing.
[17] Smith, R., 2013, Using combinations of spatial gradients to improve the detectability of buried conductors below or within conductive material: Geophysics, 78(1), E19-E31.
[18] Smith, R., 2014, Electromagnetic Induction Methods in Mining Geophysics from 2008 to 2012:Surveys in Geophysics,35(1), 123-156.
[19] Spies, B. R., 1989, Depth of investigation in electromagnetic sounding methods: Geophysics, 54(7), 872-888.
[20] Stratton, J. A., 1941, Electromagnetic theory: McGraw-Hill Book Company, New York and London, 277.
[21] Swidinsky, A., Holz, S., and Jegen, M., 2012, On mapping seafloor mineral deposits with central loop transient electromagnetics: Geophysics, 77(3), E171-E184.
[22] Wang, B., Liu, S.,Zhang, X., andHuang, L., 2015, Goaf water quantity estimation by Mine Transient Electromagnetic Method: SEG Technical Program Expanded Abstracts, New Orleans, USA, 2051-2055.
[23] Wang, R., Endo, M., and Di, Q. Y., 2010, The analysis of CSAMT responses of Dyke embedded below conductive overburden: Chinese Journal of Geophysics, 53(3), 677-684.
[24] Wang, T., and Hohmann, G. W.,1993, A finite -difference,  time-domain solution for three-dimensionalelectromagnetic modeling: Geophysics, 58(6), 797−809.
[25] Xiao, Y., Qiu, W. Z., and Yang, X. M., 2012, Evaluation of measuring time and signal-noise ratio in central loop TEM design: Coal Geology & Exploration (in Chinese), 40(5), 86−88, 92.
[26] Yan, S., and Chen, M. S., 2005, Interpretation of transient electromagnetic field data using joint time-frequency analysis: Chinese Journal of Geophysics (in Chinese), 48(1), 203−206.
[27] Yan, S., Chen, M. S., and Fu, J. M., 2002, Direct time-domain numerical analysis of transient electromagnetic fields: Chinese Journal of Geophysics (in Chinese), 45(2), 275−284.
[28] Yan, S., Shi, X. X., and Chen, M. S., 2009, The probing depth of transient electromagnetic field method: Chinese Journal of Geophysics (in Chinese), 52(6), 1583−1591.
[29] Zhdanov, M. S., 2009, Geophysical electromagnetic theory and methods: Elsevier Science Publishing Company Inc., New York, 153−231.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司