APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (3): 529-538    DOI: 10.1007s11770-016-0573-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于Kendall一致性度量的地震数据相干估计算法
杨涛1,2,高静怀1,2,张兵1,2,王大兴3
1. 西安交通大学电子与信息工程学院波动与信息研究所,陕西西安 710049
2. 海洋石油勘探国家工程实验室,陕西西安 710049
3. 中国石油长庆油田分公司勘探开发研究院,陕西西安 710018
Coherence estimation algorithm using Kendall’s concordance measurement on seismic data
Yang Tao1,2, Gao Jing-Huai1,2, Zhang Bing1,2, and Wang Da-Xing3
1. Institute of Wave and Information, Xi'an Jiaotong University, Xi’an 710049, China.
2. National Engineering Laboratory for Offshore Oil Exploration, Xi'an 710049, China.
3. Exploration and Development Research Institute of Petrochina Changqing Oil Field Company, Xi'an 710018, China.
 全文: PDF (1008 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 相干体方法常被用于刻画地震数据的不连续性和非均质性,但相干体方法若使用线性相关系数度量两个随机变量(即两个地震道)之间的关系,由于随机变量的关系是非线性的,用线性相关系数度量描述非线性关系,根据数学定义,存在一定的局限性。为了能更准确度量地震道波形之间的相似性),本文提出一种基于Kendall一致性度量算法,克服线性相关系数度量存在一定的局限性。本文的重点是研究线性相关系数度量和一致性度量对波形相似性变化的敏感性,我们设计了两个数値模型测试这两种度量对波形相似性变化的敏感性,发现Kendall一致性度量对波形的变化比线性相关系数度量更敏感,可用于精细刻画波形的变化,并结合信息散度度量可更精细刻画地层非均质性方法,我们将其应用处理实际的地震资料数据,表明该方法不但有效并具有较高的分辨率。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词一致性度量   相干估计   非线性相关   信息散度     
Abstract: The coherence method is always used to describe the discontinuity and heterogeneity of seismic data. In traditional coherence methods, a linear correlation coefficient is always used to measure the relationship between two random variables (i.e., between two seismic traces). However, mathematically speaking, a linear correlation coefficient cannot be applied to describe nonlinear relationships between variables. In order to overcome this limitation of liner correlation coefficient. We proposed an improved concordance measurement algorithm based on Kendall’s tau. That mainly concern the sensitivity of the liner correlation coefficient and concordance measurements on the waveform. Using two designed numerical models tests sensitivity of waveform similarity affected by these two factors. The analysis of both the numerical model results and real seismic data processing suggest that the proposed method, combining information divergence measurement, can not only precisely characterize the variations of waveform and the heterogeneity of an underground geological body, but also does so with high resolution. In addition, we verified its effectiveness by the actual application of real seismic data from the north of China.
Key wordsConcordance measurement   coherence estimation   nonlinear correlation   information divergence   
收稿日期: 2015-08-15;
基金资助:

本研究项目由国家自然科学基金重大项目(编号:41390454)和国家自然科学基金重大研究计划(编号:91330204)联合资助。

引用本文:   
. 基于Kendall一致性度量的地震数据相干估计算法[J]. 应用地球物理, 2016, 13(3): 529-538.
. Coherence estimation algorithm using Kendall’s concordance measurement on seismic data[J]. APPLIED GEOPHYSICS, 2016, 13(3): 529-538.
 
[1] Bahorich, M. S., and Farmer, S. L., 1995, 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube: The Leading Edge, 14, 1053−1058.
[2] Chopra, S., and Marfurt, K., 2007, Seismic attributes for prospect identification and reservoir characterization: Society of Exploration Geophysicists Geophysical Developments, 11, Tulsa, Oklahoma.
[3] Cohen, I., and Coifman, R. R., 2002, Local discontinuity measures for 3-D seismic data: Geophysics, 67, 1933−1945.
[4] Dou, X. Y., Han, L. G., Wang, E. L., Dong, X. H., Yang, Q., and Yan, G. H., 2014, A fracture enhancement method based on the histogram equalization of eigenstructure-based coherence: Applied Geophysics, 11, 179−185.
[5] Gersztenkorn, A., and Marfurt, K. J., 1999, Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping: Geophysics, 64, 1468−1479.
[6] Kendall, M. G., 1938, A new measure of rank correlation: Biometrika, 30, 81−93.
[7] Kruskal, W. H., 1958, Ordinal Measures of Association: Journal of the American Statistical Association, 53, 814−861.
[8] Lehmann, E. L., and D'Abrera, H. J. M., 1975, Nonparametric statistical methods based on ranks: Journal of the Royal Statistical Society, 83(140), 347−353.
[9] Levy, S., and Oldenburg, D., 1987, Automatic phase correction of common-midpoint stacked data: Geophysics, 52, 51−59.
[10] Li, Y., Lu, W., Zhang, S., and Xiao, H., 2006, Dip-scanning coherence algorithm using eigenstructure analysis and supertrace technique: Geophysics, 71, V61−V66.
[11] Lu, W., Li, Y., Zhang, S., Xiao, H., and Li, Y., 2005, Higher-order-statistics and supertrace-based coherence-estimation algorithm: Geophysics, 70, P13−P18.
[12] Marfurt, K. J., Kirlin, R. L., Farmer, S. L., and Bahorich, M. S., 1998, 3-D seismic attributes using a semblance-based coherency algorithm: Geophysics, 63, 1150−1165.
[13] Marfurt, K. J., Sudhaker, V., Gersztenkorn, A., Crawford, K.D., and Nissen, S.E., 1999, Coherency calculations in the presence of structural dip: Geophysics, 64, 104−111.
[14] Nelsen, R. B., 1999, Lecture Notes in Statistics: Dependence, 3(1), 139−146.
[15] Rényi, A., 1959, On a theorem of P. Erd?s and its application in information theory: Mathematica (Cluj), 1(24), 341-344.
[16] Rényi, A., 1961, On measures of entropy and information: in Neyman, J., Ed., Fourth Berkeley Symposium on Mathematical Statistics and Probability: University of California Press, Berkeley, 1, 547-561.
[17] Salicrú, M., 1994, Measures of information associated with Csiszar's divergences: Kybernetika Praha, 30(5), 563-573.
[18] Wang, J., and Lu, W. K., 2010, Coherence cube enhancement based on local histogram specification: Applied Geophysics, 7, 249-256.
[19] Wang, Y., Lu, W., and Zhang, P., 2015, An improved coherence algorithm with robust local slope estimation: Journal of Applied Geophysics, 114, 146−157.
[20] Yang, T., Zhang, B., and Gao, J., 2013, A fast coherence algorithm for seismic data interpretation based on information divergence: SEG Technical Program Expanded Abstracts, 2554−2558.
[21] Zhao, H., Gao, J., and Liu, F., 2014, Frequency-dependent reflection coefficients in diffusive-viscous media: Geophysics, 79, T143−T155.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司