APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (3): 519-528    DOI: 10.1007/s11770-016-0579-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于多地震属性融合分割的地质异常体三维模型构建
刘致宁1,宋承云1,李志勇1,蔡涵鹏2,姚兴苗2,胡光岷1
1. 电子科技大学通信与信息工程学院,成都 611731
2. 电子科技大学资源与环境学院,成都 611731
3D modeling of geological anomalies based on segmentation of multiattribute fusion
Liu Zhi-Ning1, Song Cheng-Yun1, Li Zhi-Yong1, Cai Han-Peng2, Yao Xing-Miao2, and Hu Guang-Min1
1. School of Communication and Information Engineering, University of Electronic and Technology of China, Chengdu 611731, China.
2. School of Resources and Environment, University of Electronic and Technology of China, Chengdu 611731, China.
 全文: PDF (844 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 根据三维地震资料开展地质异常体的三维模型构建可以给出地质异常体的形状和体积,能够直接用于储层预测、储量计算和井位部署等多项工作。针对现有方法因未有效利用多属性信息导致三维模型与实际资料不符的问题,本文提出了一种基于多地震属性融合分割的地质异常体三维模型构建方法。首先将多种地震属性划分为两类:基于边缘特征的地震属性和基于区域特征的地震属性。再根据两类地震属性在地质异常体分割中的不同作用,在水平集方法的框架下构建边缘与区域相结合的分割模型,实现多地震属性的融合分割。最后采用移动立方体算法提取零等值面,得到地质异常体的三维模型。该方法通过融合边缘与区域两类地震属性进行三维模型构建,不仅满足了相互独立的要求,还引入了更丰富的地质信息,解决了单一地震属性难以准确描绘地质异常体边界的问题。该方法用于中国四川盆地不同工区内溶洞与河道的三维模型构建,最终结果相比于基于单属性得到的三维模型更加符合地质规律。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词地质异常体   多属性融合   融合分割   三维模型构建     
Abstract: 3D modeling of geological bodies based on 3D seismic data is used to define the shape and volume of the bodies, which then can be directly applied to reservoir prediction, reserve estimation, and exploration. However, multiattributes are not effectively used in 3D modeling. To solve this problem, we propose a novel method for building of 3D model of geological anomalies based on the segmentation of multiattribute fusion. First, we divide the seismic attributes into edge- and region-based seismic attributes. Then, the segmentation model incorporating the edge- and region-based models is constructed within the levelset-based framework. Finally, the marching cubes algorithm is adopted to extract the zero level set based on the segmentation results and build the 3D model of the geological anomaly.Combining the edge-and region-based attributes to build the segmentation model, we satisfy the independence requirement and avoid the problem of insufficient data of single seismic attribute in capturing the boundaries of geological anomalies. We apply the proposed method to seismic data from the Sichuan Basin in southwestern China and obtain 3D models of caves and channels. Compared with 3D models obtained based on single seismic attributes, the results are better agreement with reality.
Key wordsGeological anomaly   multiattributes   fusion, segmentation   3D modeling   
收稿日期: 2015-11-13;
基金资助:

本研究由国家自然科学基金青年基金项目(编号:41604107)和电子科技大学科研启动基金(编号:ZYGX2015KYQD049)联合资助。

引用本文:   
. 基于多地震属性融合分割的地质异常体三维模型构建[J]. 应用地球物理, 2016, 13(3): 519-528.
. 3D modeling of geological anomalies based on segmentation of multiattribute fusion[J]. APPLIED GEOPHYSICS, 2016, 13(3): 519-528.
 
[1] Barnes, A. E., 2000, Attributes for automated seismic facies analysis: 70th Annual International Meeting, SEG, Expanded Abstracts, 553-556.
[2] Caumon, G., Collon-Drouaillet, P., De Veslud, C. L. C., and Sausse, J., 2009, Surface-based 3D modeling of geological structures: Mathematical Geosciences, 41(8), 927−945.
[3] Chan, T. F., and Vese, L., 2001, Active contours without edges: Image processing, IEEE transactions on, 10(2), 266−277.
[4] Chopra, S., and Marfurt, K. J., 2005, Seismic attributes—A historical perspective: Geophysics, 70(5), 3−28.
[5] Frank, T., Tertois, A. L., and Mallet, J. L., 2007, 3D-reconstruction of complex geological interfaces from irregularly distributed and noisy point data: Computers & Geosciences, 33(7), 932−943.
[6] Gao, D., 2003, Volume texture extraction for 3D seismic visualization and interpretation: Geophysics, 68(4), 1294−1302.
[7] Hale, D., and Emanuel, J., 2003, Seismic interpretation using global image segmentation: 73rd Annual International Meeting, SEG, Expanded Abstracts, 2410−2413.
[8] Hale, D., 2013, Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3D seismic images: Geophysics, 78(2), 33−43.
[9] Halpert, A. D., Clapp, R. G., and Biondi, B., 2009, Seismic image segmentation with multiple attributes: 79th Annual International Meeting, SEG, Expanded Abstracts, 3700−3704.
[10] Halpert, A. D., Clapp, R. G., and Biondi, B., 2014, Salt delineation via interpreter-guided 3D seismic image segmentation: Interpretation, 2(2), 79−88.
[11] Hanning, T., and Pisinger, G., 2002, A pixel-based segmentation algorithm of color images by N-level-fitting: 5th IASTED International Conference on Computer Graphics and Imaging (Honolulu, Hawaii), 138−144.
[12] Kadlec, B. J., Dorn, G. A., and Tufo, H. M., 2008, Confidence and curvature-guided level sets for channel segmentation: 78th Annual International Meeting, SEG, Expanded Abstracts, 879−883.
[13] Kadlec, B. J., 2009, Interactive GPU-based visualization and structure analysis of three-dimensional implicit surfaces for seismic interpretation: PhD Thesis, University of Colorado, Colorado.
[14] Li, C., Xu, C., Gui, C., and Fox, M. D., 2010, Distance regularized level set evolution and its application to image segmentation: Image Processing, IEEE Transactions on, 19(12), 3243−3254.
[15] Lomask, J., Biondi, B., and Shragge, J., 2004, Image segmentation for tracking salt boundaries: 74th Annual International Meeting, SEG, Expanded Abstracts, 2443-2446.
[16] Lomask, J., Clapp, R. G., and Biondi, B., 2006, Parallel implementation of image segmentation for tracking 3D salt boundaries: 68th Annual Conference and Exhibition, EAGE, Extended Abstracts, 1402−1405.
[17] Lomask, J., Clapp, R. G., and Biondi, B., 2007, Application of image segmentation to tracking 3D salt boundaries: Geophysics, 72(4), 47−56.
[18] Lorensen, W. E., and Cline, H. E., 1987, Marching cubes: A high resolution 3D surface construction algorithm:ACM siggraph computer graphics, 21(4), 163-169.
[19] Love, P. L., and Simaan, M., 1985, Segmentation of a seismic section using image processing and artificial intelligence techniques: Pattern Recognition, 18(6), 409−419.
[20] Osher, S., and Sethian, J. A., 1988, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations: Journal of computational physics, 79(1), 12−49.
[21] Wen, X., He, Z., Huang, D., and Chen, X., 2011, Highlighting display of geologic bodies based on directivity filtering: Applied Geophysics, 8(4), 355−362.
[22] Weng, Z. P., 2013, Fast Building and Refreshing Three-dimensional Models of Geological Entity: PhD Thesis, China University of Geosciences, Wuhan.
[23] Zhao, H. K., Osher, S., and Fedkiw, R., 2001, Fast surface reconstruction using the level set method: Variational and Level Set Methods in Computer Vision, Proceedings, IEEE Workshop on, 194−201.
[24] Zhang J., Liu, Z., Zhu B, Feng, D., Zhang, M., and Zhang, X., 2011, Fluvial reservoir characterization and identification: A case study from Laohekou Oilfield: Applied Geophysics, 8(3), 181−188.
[1] 王兴建, 胡光岷, 曹俊兴. 多属性融合技术在苏14井区的应用研究[J]. 应用地球物理, 2010, 7(3): 257-264.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司