APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (3): 539-552    DOI: 10.1007/s11770-016-0572-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
煤矿老空水全空间瞬变电磁响应三维数值模拟及应用
常江浩,于景邨,刘志新
中国矿业大学 资源与地球科学学院,江苏徐州 221116
Three-dimensional numerical modeling of full-space transient electromagnetic responses of water in goaf
Chang Jiang-Hao1, Yu Jing-Cun1, and Liu Zhi-Xin1
1. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China.
 全文: PDF (1171 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 煤矿老空水是煤矿安全的最大隐患。本文对煤矿老空水的全空间瞬变电磁响应特征进行了数值模拟研究。传统的数值模拟方法不能直接模拟井下全空间瞬变电磁场。我们采用了以多组发射线圈代替传统的单发射回线的方式,使在有限差分法直角网格中加载任意方向发射回线,同时根据全空间特点对磁场的z分量算法进行了改进;根据煤矿实际地质资料建立全空间三维地电模型,采用时域有限差分法模拟了含煤地层中不同位置和不同形态老空水模型的全空间瞬变电磁响应,并分析其视电阻率特征。数值模拟结果表明:煤层与其顶底板电性差异对视电阻率分布产生较大影响,致使视电阻率分布呈以巷道迎头为圆心的近似圆形分布;不同位置和不同形态的老空水模型,其视电阻率等值线低阻异常区与其基本吻合,当老空水位于巷道迎头位置一侧时,由于全空间效应的影响,在另一侧产生一范围相对较小的低阻假异常区,但其等值线数值相对较高。将井下瞬变电磁法应用于实际老空水的探测中,探测资料圈定的老空水位置为后期钻探结果所证实,证明了所提出的方法是合理与有效的。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词老空水   矿井瞬变电磁法   全空间   数值模拟   时域有限差分     
Abstract: The full-space transient electromagnetic response of water-filled goaves  in coal mines were numerically modeled. Traditional numerical modeling methods cannot be used to simulate the underground full-space transient electromagnetic field. We used multiple transmitting loops instead of the traditional single transmitting loop to load the transmitting loop into Cartesian grids. We improved the method for calculating the z-component of the magnetic field based on the characteristics of full space. Then, we established the full-space 3D geoelectrical model using geological data for coalmines. In addition, the transient electromagnetic responses of water-filled goaves of variable shape at different locations were simulated by using the finite-difference time-domain (FDTD) method. Moreover, we evaluated the apparent resistivity results. The numerical modeling results suggested that the resistivity differences between the coal seam and its roof and floor greatly affect the distribution of apparent resistivity, resulting in nearly circular contours  with the roadway head at the center. The actual distribution of apparent resistivity for different geoelectrical models of water in goaves was consistent with the models. However, when the goaf water was located in one side, a false low-resistivity anomaly would appear on the other side owing to the full-space effect but the response was much weaker. Finally, the modeling results were subsequently confirmed by drilling, suggesting that the proposed method was effective.
Key wordsGoaf   water   mine transient electromagnetic method   fullspace   finite-difference time-domain method   
收稿日期: 2015-04-12;
基金资助:

本研究由国家重大科学仪器设备开发专项(编号:2011YQ03013307),江苏高校优势学科建设工程和国土资源部煤炭资源勘查与综合利用重点实验室资助。

引用本文:   
. 煤矿老空水全空间瞬变电磁响应三维数值模拟及应用[J]. 应用地球物理, 2016, 13(3): 539-552.
. Three-dimensional numerical modeling of full-space transient electromagnetic responses of water in goaf[J]. APPLIED GEOPHYSICS, 2016, 13(3): 539-552.
 
[1] Alford, R. M., Kelly, K. R., and Boore, D. M., 1974, Accuracy of finite-difference modeling of the acoustic wave equation: Geophysics, 39(6), 834−842.
[2] Fitterman, D. V., and Anderson, W. L., 1987, Effect of transmitter turn-off time on transient soundings: Geoexploration, 24, 131-146.
[3] Goldman, Y., Hubans, C., Nicoletis, S., et al., 1986, A finite-element solution for the transient electromagnetic response of an arbitrary two-dimensional resistivity distribution: Geophysics, 51(7), 1450−1461.
[4] Jiang, Z. H., 2008, Study on the mechanism and technology of advanced detection with transient electromagnetic method for roadway drivage face: PhD Thesis, China University of Mining and Technology, Xuzhou.
[5] Kaufman, A. A., and Keller, G. V., 1983, Frequency and transient soundings: Elsevier, New York.
[6] Liu, Y., Wang, X. B., and Wang, B., 2013, Numerical modeling of the 2D time-domain transient electromagnetic secondary field of the line source of the current excitation: Applied Geophysics, 10(2), 134−144.
[7] Oristaglio, M. L., and Hohmann, G. W., 1984, Diffusion of electromagnetic fields into a two-dimensional earth: A finite-difference approach: Geophysics, 49(7), 870−894.
[8] Raiche, A. P., 1984, The effect of ramp function turn -off on the TEM response of layered earth: Exploration Geophysics, 15, 37− 41.
[9] SanFilipo, W. A., and Hohmann, G. W., 1985, Integral equation solution for the transient electromagnetic response of a three-dimensional body in a conductive half-space: Geophysics, 50(5), 798−809.
[10] Sun, H. F., Li, X., Li, S. C., et al., 2013, Three-dimensional FDTD modeling of TEM excited by a loop source considering ramp time: Chinese Journal of Geophysics (in Chinese), 56(3), 1049−1064.
[11] Wang, T., and Hohmann, G. W., 1993, A finite-difference time-domain solution for three-dimensional electromagnetic modeling: Geophysics, 58(6), 797−809.
[12] Yan, S., Chen, M. S., and Fu, J. M., 2002, Direct Time-domain numerical analysis of TEM fields: Chinese Journal of Geophysics (in Chinese), 45(2), 275−282.
[13] Yang, H. Y., Deng, J. Z., Zhang, H., and Yue, J. H., 2010, Research on full-space apparent resistivity interpretation technique in mine transient electromagnetic method: Chinese Journal of Geophysics (in Chinese), 53(3), 651−656.
[14] Yang, H. Y., and Yue, J. H., 2008, Response characteristics of the 3D Whole-Space TEM disturbed by roadway: Journal of Jilin University(Earth Science Edition)(in Chinese), 38(1), 129−134.
[15] Yee, K. S., 1966, Numerical solution of initial boundary problems involving Maxwell’s equations in isotropic media: IEEE Transactions on Antennas and Propagation,, 14(3), 302−307.
[16] Yu, J. C., 2007, Mine transient electromagnetic prospecting: Press of China University of Mining and Technology, Xuzhou.
[17] Yu, J. C., Wang, Y. Z., Liu, J., and Zeng, X. B., 2008, Time-depth conversion of transient electromagnetic method used in coal mines: Journal of China University of Mining and Technology, 18(4), 546−550.
[18] Zhdanov, M. S., Lee, S. K., and Yoshioka, K., 2006, Integral equation method for 3D modeling of electromagnetic fields in complex structures with inhomogeneous background conductivity: Geophysics, 71(6), G333−G345.
[1] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[2] 戴世坤,赵东东,张钱江,李昆,陈轻蕊,王旭龙. 基于泊松方程的空间波数混合域重力异常三维数值模拟[J]. 应用地球物理, 2018, 15(3-4): 513-523.
[3] 胡松,李军,郭洪波,王昌学. 水平井随钻电磁波测井与双侧向测井响应差异及其解释应用[J]. 应用地球物理, 2017, 14(3): 351-362.
[4] 孟庆鑫,胡祥云,潘和平,周峰. 地-井瞬变电磁多分量响应数值分析[J]. 应用地球物理, 2017, 14(1): 175-186.
[5] 杨思通,魏久传,程久龙,施龙青,文志杰. 煤巷三维槽波全波场数值模拟与波场特征分析[J]. 应用地球物理, 2016, 13(4): 621-630.
[6] 付博烨,符力耘,魏伟,张艳. 超声岩石物理实验尾波观测中边界反射的影响分析[J]. 应用地球物理, 2016, 13(4): 667-682.
[7] 陶蓓,陈德华,何晓,王秀明. 界面不规则性对套后超声波成像测井响应影响的模拟研究[J]. 应用地球物理, 2016, 13(4): 683-688.
[8] 张钱江,戴世坤,陈龙伟,强建科,李昆,赵东东. 基于网格加密-收缩的2.5D直流电法有限元模拟[J]. 应用地球物理, 2016, 13(2): 257-266.
[9] 刘洋, 李向阳, 陈双全. 高精度双吸收边界条件在地震波场模拟中的应用[J]. 应用地球物理, 2015, 12(1): 111-119.
[10] Cho, Kwang-Hyun. 爆炸与天然地震的区别[J]. 应用地球物理, 2014, 11(4): 429-436.
[11] 尹成芳, 柯式镇, 许巍, 姜明, 张雷洁, 陶婕. 三维阵列侧向测井电极系设计及其响应模拟[J]. 应用地球物理, 2014, 11(2): 223-234.
[12] 何怡原, 张保平, 段玉婷, 薛承瑾, 闫鑫, 何川, 胡天跃. 水力压裂产生的地表和地下变形场数值模拟[J]. 应用地球物理, 2014, 11(1): 63-72.
[13] 赵建国, 史瑞其. 时域有限元弹性波模拟中的位移格式完全匹配层吸收边界[J]. 应用地球物理, 2013, 10(3): 323-336.
[14] 刘云, 王绪本, 王赟. 线源二维时间域瞬变电磁二次场数值模拟[J]. 应用地球物理, 2013, 10(2): 134-144.
[15] 常锁亮, 刘洋. 结合边界条件的截断高阶隐式有限差分方法[J]. 应用地球物理, 2013, 10(1): 53-62.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司