APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (3): 511-518    DOI: 10.1007/s11770-016-0568-7
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
棱柱波形与全波形联合反演方法
曲英铭1,李振春1,黄建平1,李金丽2
1. 中国石油大学(华东)地球科学与技术学院,山东青岛 266580
2. 中国地质科学院地球物理地球化学勘查研究所,河北廊坊 065000
Prismatic and full-waveform joint inversion
Qu Ying-Ming1, Li Zhen-Chun1, Huang Jian-Ping1, and Li Jin-Li2
1. Department of Geophysics, School of Geosciences, China University of Petroleum, Qingdao 266580, China.
2. Chinese Academy of Geological Sciences Institute of Geophysical and Geochemical Exploration, Langfang 065000, China.
 全文: PDF (741 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 包含了很多一次波无法获取的地下高陡反射界面信息。 棱柱波的特点是它有三段主要反射路径和两个反射点,一个反射点位于反射界面上,另一个位于陡倾角反射层上。从而含有了很多一次波无法获取的地下高陡反射界面信息, 我们应用Born近似对常规逆时偏移成像剖面处理可以将棱柱波信息提取出来,然后用棱柱波进行速度更新以提高盐体悬伸侧翼等高陡构造的反演速度。基于此想法下提出了棱柱波形反演(prismatic waveform inversion), 简称PWI方法,但棱柱波形反演方法存在明显的弱点:一次迭代的时间是全波形反演(FWI)的两倍,而且不能充分利用全波场信息。为此,我们将全波形反演与棱柱波形反演方法两者结合起来进行联合反演,FWI与PWI方法交替使用更新速度场。模型的试算表明,这种联合反演方法对初始模型中高陡构造信息是否缺失依赖性较低,对高陡构造的反演精度和效率都更高。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词棱柱波形反演   全波形反演   高陡构造   洼陷模型   Marmousi2模型     
Abstract: Prismatic wave is that it has three reflection paths and two reflection points, one of which is located at the reflection interface and the other is located at the steep dip angle reflection layer, so that contains a lot of the high and steep reflection interface information that primary cannot reach. Prismatic wave field information can be separated by applying Born approximation to traditional reverse time migration profile, and then the prismatic wave is used to update velocity to improve the inversion efficiency for the salt dame flanks and some other high and steep structure. Under the guidance of this idea, a prismatic waveform inversion method is proposed (abbreviated as PWI). PWI has a significant drawback that an iteration time of PWI is more than twice as that of FWI, meanwhile, the full wave field information cannot all be used, for this problem, we propose a joint inversion method to combine prismatic waveform inversion with full waveform inversion. In this method, FWI and PWI are applied alternately to invert the velocity. Model tests suggest that the joint inversion method is less dependence on the high and steep structure information in the initial model and improve high inversion efficiency and accuracy for the model with steep dip angle structure.
Key wordsprismatic waveform inversion   full waveform inversion   high and steep structure   sag model   Marmousi2 model   
收稿日期: 2015-11-05;
基金资助:

本研究由国家973项目(编号:2014CB239006和2011CB202402),国家自然科学基金(编号:41104069,41274124),和中国石油大学研究生创新工程资助项目(YCXJ2016001)联合资助。

引用本文:   
. 棱柱波形与全波形联合反演方法[J]. 应用地球物理, 2016, 13(3): 511-518.
. Prismatic and full-waveform joint inversion[J]. APPLIED GEOPHYSICS, 2016, 13(3): 511-518.
 
[1] Ao, R. D, Dong, L. G., and Chi, M. X., 2015, Source-independent envelope-based FWI to build an initial model: Chinese J. Geophys. (in Chinese), 58(6), 1998-2010.
[2] Asnaashari, A., Brossier, R., Garambois, S., Audebert, F., and Virieux J., 2013, Regularized seismic full waveform inversion with prior model information: Geophysics, 78(2), R25-R36.
[3] Broto, K., and Lailly, P., 2001, Towards the tomogtaphic inversion of prismatic reflections: KIM 2001 Annual Report.
[4] Cavalca, M., and Lailly, P., 2001, Towards the tomographic inversion of prismatic reflections: 71st Annual International Meeting, SEG, Expanded Abstracts, 726-729.
[5] Cavalca, M., and Lailly, P., 2005, Prismatic reflections for the delineation of salt bodies: 75th Annual International Meeting, SEG, Expanded Abstracts, 2350-2354.
[6] Dai, W., 2012, Multisource least-squares migration and prism wave reverse time migration: PhD Thesis, The University of Utah, America.
[7] Dong, L. G., Chi, B. X., Tao, J. X., and Liu, Y. Z., 2013, Objective function behavior in acoustic full-waveform inversion: Chinese J. Geophys. (in Chinese), 56(10), 3445-3460.
[8] Guitton, A., 2010, A preconditioning scheme for full waveform inversion. 80st Annual International Meeting, SEG Expanded Abstracts, 1008-1012.
[9] Hale, D., Hill, N. R., and Stefani, J., 1992, Imaging salt with turning seismic waves: Geophysics, 57(11), 1453-1462.
[10] Hawkins, K., 1994, The challenge presented by North Sea Central Graden salt domes to all DMO algorithms: First Break, 12(6), 327-343.
[11] Krebs, J. R., Anderson, J. E., and Hinkley, D., 2009, Fast full-wavefield seismic inversion using encoded sources: Geophysics, 74(6), WCC177-WCC188.
[12] Li, Y. F., Agnihotri, Y., and Ty, T., 2011, Prismatic wave imaging with dual flood RTM: 81th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 3290-3294.
[13] Liu, Y. Z., Yang, J. Z., Chi, B. X., and Dong, L. G., 2015, An improved scattering-integral approach for frequency-domain full waveform inversion: Geophysical Journal International, 202(3), 1827-1842.
[14] Luo, Y., and Schuster, G. T., 1990, Wave-equation traveltime + waveform inversion: 60st Annual International Meeting, SEG, Expanded Abstract, 1223-1225.
[15] Malcolm, A. E., Ursin, B., and Maarten, V., 2009, Seismic imaging and illumination with internal multiples: Geophysical Journal International, 176(3), 847-864.
[16] Marmalyevskyy, N., Roganov, Y., Gornyak, Z., Kostyukevych, A., and Mershchiy, V., 2005, Migration of duplex waves: 75th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 2025-2029.
[17] Mora, P., 1987, Nonlinear two-dimensional elastic inversion of multioffset seismic data: Geophysics, 52(9), 1211-1228.
[18] Ren, H. R., 2011, A study of the seismic wave inversion method for imaging in the acoustic media: PhD Thesis, Tongji University, Shanghai.
[19] Vigh, D., and Starr, E. W., 2008, 3D prestack plane-wave, full-waveform inversion: Geophysics, 73(5), 135-144.
[20] Weibull, W., Arntsen, B., and Nilsen, E., 2012, Initial velocity models for full waveform inversion: 82th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstract, 1-4.
[1] 王恩江,刘洋,季玉新,陈天胜,刘韬. 粘滞声波方程Q值波形反演方法研究*[J]. 应用地球物理, 2019, 16(1): 83-98.
[2] 张钱江, 戴世坤, 陈龙伟, 李昆, 赵东东, 黄兴兴. 起伏地形条件下二维声波频率域全波形反演[J]. 应用地球物理, 2015, 12(3): 378-388.
[3] 王义, 董良国, 刘玉柱. 一种改进的全波形反演混合迭代优化方法[J]. 应用地球物理, 2013, 10(3): 265-277.
[4] 韩淼, 韩立国, 刘春成, 陈宝书. 基于混叠震源和频率组编码的频率域自适应全波形反演[J]. 应用地球物理, 2013, 10(1): 41-52.
[5] 宋建勇, 郑晓东, 秦臻, 苏本玉. 基于多网格的频率域全波形反演[J]. 应用地球物理, 2011, 8(4): 303-310.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司