APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (3): 500-510    DOI: 10.1007/s11770-016-0571-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于保幅波场分离的弹性波逆时偏移方法研究
杨佳佳1,2,栾锡武1,2 ,方刚1,2,刘欣欣1,2,潘军1,2,王小杰1,2
1. 国土资源部油气资源和环境地质重点实验室,青岛海洋地质研究所,青岛 266071
2. 海洋国家实验室海洋矿产资源评价与探测技术功能实验室,青岛 266071
Elastic reverse-time migration based on amplitude-preserving P- and S-wave separation
Yang Jia-Jia1,2, Luan Xi-Wu1,2, Fang Gang1,2, Liu Xin-Xin1,2, Pan Jun1,2, and Wang Xiao-Jie1,2
1. Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Land and Resources, Qingdao Institute of Marine Geology, Qingdao 266071, China;
2. Laboratory for Marine Mineral Resources, National Laboratory for Marine Science and Technology, Qingdao 266071, China.
 全文: PDF (1264 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 欲实现基于弹性波方程的矢量波场逆时偏移纵、横波独立成像,必须在波场延拓过程中实现纵、横波场的分离,散度和旋度算子分离的纵、横波出现振幅与相位的畸变,导致输出成像结果的振幅失真。本文提出一种在弹性波场延拓过程中实现纵、横波保幅分离的方法,在传统的弹性波方程中加入纵波压力、纵波振动速度和横波振动速度方程,实现纵横波的矢量分解,再对分解后的矢量纵波和矢量横波做标量化合成得到保幅分离的纵、横波场,对保幅分离的纵、横波场应用成像条件,然后实现矢量波场逆时偏移的保幅纵横波成像。该方法可以保证分离后纵、横波的振幅与相位不变;同时,分解后的纵波压力和纵波振动速度可用于层间反射噪音压制和横波极性校正,提高多分量地震资料联合逆时偏移的纵、横波成像质量,从而实现保幅弹性波逆时偏移的目的,为叠前深度剖面应用于叠前反演工作奠定基础。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词矢量波场   逆时偏移   纵横波成像   矢量合成   保幅成像     
Abstract: Imaging the PP- and PS-wave for the elastic vector wave reverse-time migration requires separating the P- and S-waves during the wave field extrapolation. The amplitude and phase of the P- and S-waves are distorted when divergence and curl operators are used  to separate  the P- and S-waves. We present a P- and S-wave  amplitude-preserving separation algorithm for the elastic wavefield extrapolation. First, we add the P-wave pressure and P-wave vibration velocity equation to the conventional elastic wave equation to decompose the P- and S-wave vectors. Then, we synthesize the scalar P- and S-wave from the vector P- and S-wave to obtain the scalar P- and S-wave. The amplitude-preserved separated P- and S-waves are imaged based on the vector wave reverse-time migration (RTM). This method ensures that the amplitude and phase of the separated P- and S-wave remain unchanged compared with the divergence and curl operators. In addition, after decomposition, the P-wave pressure and vibration velocity can be used to suppress the interlayer reflection noise and to correct the S-wave polarity. This improves the image quality of P- and S-wave in multicomponent seismic data and the true-amplitude elastic reverse time migration used in prestack inversion.
Key wordsVector wavefield   reverse-time migration   PP-wave and PS-wave imaging   vector modulation   amplitude-preserving imaging   
收稿日期: 2016-04-01;
基金资助:

本研究由公益性行业科研专项(编号:201511037),国家自然科学基金青年基金项目(编号:41504109,41506084,和41406071),中国博士后基金(编号:2015M582060)和青岛市应用研究项目(编号:2015308)联合资助。

引用本文:   
. 基于保幅波场分离的弹性波逆时偏移方法研究[J]. 应用地球物理, 2016, 13(3): 500-510.
. Elastic reverse-time migration based on amplitude-preserving P- and S-wave separation[J]. APPLIED GEOPHYSICS, 2016, 13(3): 500-510.
 
[1] Aki, K., and Richards, P. G., 1980, Quantitative seismology, theory and methods: W. H. Freeman and Co, San Francisco.
[2] Berenger, J. P., 1994, A perfectly matched layer for the absorption of electro-magnetic waves: Journal of Computational Physics, 114, 185−200.
[3] ervený, V., 2001, Seismic ray theory: Cambridge University Press, England.
[4] Chang, W. F., and McMechan, G. A., 1987, Elastic reverse-time migration: Geophysics, 52(10), 1365−1375.
[5] Chang, W. F., and McMechan, G. A., 1994, 3D elastic prestack reverse-time depth migration: Geophysics, 59(4), 597−609.
[6] Chattopadhyay, S., and McMechan, G. A., 2008, Imaging conditions for reverse time migration: Geophysics, 73(3), S81−S89.
[7] Chen, T., and He, B. S., 2014, A normalized wavefield separation cross-correlation imaging condition for reverse time migration based on Poynting vector: Applied Geophysics, 11(2), 158−166.
[8] Dong, L. G., Ma, Z. T., Cao, J. Z., et al., 2000, A staggered-grid high-order difference method of one-order elastic wave equation: Chinese Journal of Geophysics(in Chinese), 43(3), 411−419.
[9] Du, Q. Z., Zhang, M. Q., Chen, X. R., Gong, X. F., and Guo, C. F., 2015, True-amplitude wavefield separation using staggered-grid interpolation in the wavenumber domain: Applied Geophysics, 11(4), 437−446.
[10] He, B. S., and Zhang. H. X., 2006, Vector prestack depth migration of multi-component wavefield: Oil Geophysical Prospecting (in Chinese), 41(4), 369−374.
[11] Li, Z. Y., Liang, G. H., and Gu, B. L., 2013, Improved method of separating P- and S-waves using divergence and curl: Chinese Journal of Geophysics (In Chinese), 565(6), 2012−2022.
[12] McMechan, G. A., 1989, A review of seismic acoustic imaging by reverse-time migration: International Journal of Imaging Systems and Technology, 1(1), 18−21.
[13] Mu, Y. G., and Pei, Z. L., 2005, Seismic numerical modeling for 3-D complex media: Petroleum Industry Press, China (in Chinese).
[14] Sun, R., 1999, Separating P- and S-waves in a prestack 2-dimensional elastic seismogram: 61st Conference, European Association of Geoscientists and Engineers, Extended Abstracts, 6−23.
[15] Sun, R., Chow, J., and Chen, K. J., 2001, Phase correction in separating P- and S-waves in elastic data: Geophysics, 66(5), 1515−1518.
[16] Sun, R., and McMechan, G. A., 2001, Scalar reverse-time depth migration of prestack elastic seismic data: Geophysics, 66(5), 1519−1527.
[17] Sun, R., McMechan, G. A., and Chuang, H., 2011, Amplitude balancing in separating P and S-waves in 2D and 3D elastic seismic data: Geophysics, 76(3), S103−S113.
[18] Sun, R., McMechan, G. A., Hsian, H., and Chow, J., 2004, Separating P- and S-waves in prestack 3D elastic seismograms using divergence and curl: Geophysics, 69(1), 286−297.
[19] Sun, R., McMechan, G. A., Lee. C. S., et al., 2006, Prestack scalar reverse-time depth migration of 3D elastic seismic data: Geophysics, 71(5), 199−207.
[20] Wang, W. L., and McMechan, G. A., 2015, Vector-based elastic reverse time migration: Geophysics, 80(6), S245−S258.
[21] Xiao, X., and Leaney, W. S., 2010, Local vertical seismic profiling (VSP) elastic reverse-time migration and migration resolution — Salt-flank imaging with transmitted P-to-S waves: Geophysics, 75(2), S35-S49.
[22] Yan, R., and Xie, X., 2012, An angle-domain imaging condition for elastic reverse time migration and its application to angle gather extraction: Geophysics, 77(5), S105-S115.
[23] Yoon, K., and Marfurt, K. J., 2006, Reverse-time migration using the Poynting vector: Exploration Geophysics, 37, 102-107.
[24] Zhang, Q., and McMechan, G. A., 2011, Common-image gathers in the incident phase-angle domain from reverse time migration in 2D elastic VTI media: Geophysics, 76(6), S197-S206.
[1] 刘国峰,孟小红,禹振江,刘定进. 多GPU TTI 介质逆时偏移*[J]. 应用地球物理, 2019, 16(1): 61-69.
[2] 薛浩,刘洋. 基于多方向波场分离的逆时偏移成像方法[J]. 应用地球物理, 2018, 15(2): 222-233.
[3] 孙小东,贾延睿,张敏,李庆洋,李振春. 伪深度域最小二乘逆时偏移方法及应用[J]. 应用地球物理, 2018, 15(2): 234-239.
[4] 杨佳佳,栾锡武,何兵寿,方刚,潘军,冉伟民,蒋陶. 基于矢量波场逆时偏移的保幅角道集提取方法[J]. 应用地球物理, 2017, 14(4): 492-504.
[5] 孙小东,李振春,贾延睿. 基于变网格的不同观测系统下的逆时偏移[J]. 应用地球物理, 2017, 14(4): 517-522.
[6] 孙小东,葛中慧,李振春. 基于共轭梯度法和互相关的最小二乘逆时偏移及应用[J]. 应用地球物理, 2017, 14(3): 381-386.
[7] 孙小东,葛中慧,李振春,洪瑛. 黏声VTI介质逆时偏移成像稳定性研究[J]. 应用地球物理, 2016, 13(4): 608-613.
[8] 张宫, 李宁, 郭宏伟, 武宏亮, 罗超. 远探测声反射波测井裂缝识别条件分析[J]. 应用地球物理, 2015, 12(4): 473-481.
[9] 蔡晓慧, 刘洋, 任志明, 王建民, 陈志德, 陈可洋, 王成. 三维声波方程优化有限差分正演[J]. 应用地球物理, 2015, 12(3): 409-420.
[10] 杜启振, 张明强, 陈晓冉, 公绪飞, 郭成锋. 交错网格中基于波数域插值的波场分离方法研究[J]. 应用地球物理, 2014, 11(4): 437-446.
[11] 赵岩, 刘洋, 任志明. 基于优化时空域高阶有限差分方法的粘滞声波叠前逆时偏移[J]. 应用地球物理, 2014, 11(1): 50-62.
[12] 孙文博, 孙赞东, 朱兴卉. 相对保幅的角度域VSP逆时偏移[J]. 应用地球物理, 2011, 8(2): 141-149.
[13] 张敏, 李振春, 张华, 孙小东. 起伏地表无反射递推算法叠后逆时偏移[J]. 应用地球物理, 2010, 7(3): 239-248.
[14] 巩向博, 韩立国, 牛建军, 张晓培, 王德利, 杜立志. 联合速度建模及其在反射波法隧道超前预报中的应用[J]. 应用地球物理, 2010, 7(3): 265-271.
[15] 杜启振, 孙瑞艳, 秦童, 朱钇同, 毕丽飞. 多分量联合逆时偏移最佳匹配层吸收边界[J]. 应用地球物理, 2010, 7(2): 166-173.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司