APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (3): 491-499    DOI: 10.1007/s11770-016-0580-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于构造导向滤波的多震源最小二乘逆时偏移方法研究
范景文1,2,李振春1,2,张凯1,2,张敏1,2,刘学通3
1. 中国石油大学(华东)地球科学与技术学院,青岛 266580
2. 海洋国家实验室海洋矿产资源评价与探测技术功能实验室,青岛 266071
3. 中海石油(中国)有限公司天津分公司,天津300452
Multisource least-squares reverse-time migration with structure-oriented filtering
Fan Jing-Wen1,2, Li Zhen-Chun1,2, Zhang Kai1,2, Zhang Min1,2, and Liu Xue-Tong3
1. School of Geosciences, China University of Petroleum, Qingdao 266580, China.
2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
3. CNOOC China Limited, Tianjin Branch, Tianjin 300452, China.
 全文: PDF (760 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 多震源同时采集技术能够有效提高采集效率,得到来自多个震源的混合地震数据,该技术能缩短采集周期,降低采集成本,但对混合地震数据直接成像会在成像结果中引入串扰噪音,影响成像质量。因此,本文在实现多震源最小二乘逆时偏移的基础上,引入构造导向滤波算子作为多震源最小二乘逆时偏移的预条件算子,沿着构造走向应用非平稳滤波在有效保护构造信息的前提下压制串扰噪音,通过共轭梯度法使得反偏移数据与观测数据之间的误差达到最小,最终得到信噪比更高的成像结果。合成数据的数值实验表明,本文所提出的方法能够有效压制串扰噪音,提高成像精度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词多震源同时采集   混合数据   最小二乘偏移   构造导向滤波     
Abstract: The technology of simultaneous-source acquisition of seismic data excited by several sources can significantly improve the data collection efficiency. However, direct imaging of simultaneous-source data or blended data may introduce crosstalk noise and affect the imaging quality. To address this problem, we introduce a structure-oriented filtering operator as preconditioner into the multisource least-squares reverse-time migration (LSRTM). The structure-oriented filtering operator is a nonstationary filter along structural trends that suppresses crosstalk noise while maintaining structural information. The proposed method uses the conjugate-gradient method to minimize the mismatch between predicted and observed data, while effectively attenuating the interference noise caused by exciting several sources simultaneously. Numerical experiments using synthetic data suggest that the proposed method can suppress the crosstalk noise and produce highly accurate images.
Key words:   
收稿日期: 2016-05-08;
基金资助:

本研究项目由本研究由国家自然科学基金(编号:41374122和41504100)联合资助。

引用本文:   
. 基于构造导向滤波的多震源最小二乘逆时偏移方法研究[J]. 应用地球物理, 2016, 13(3): 491-499.
. Multisource least-squares reverse-time migration with structure-oriented filtering[J]. APPLIED GEOPHYSICS, 2016, 13(3): 491-499.
 
[1] Baysal, E., Kosloff, D. D., and Sherwood, J. W. C., 1983, Reverse-time migration: Geophysics, 48, 1514−1524.
[2] Beasley, C. J., 2008, A new look at marine simultaneous sources: The Leading Edge, 27, 914−917.
[3] Berkhout, A. J., 2008, Changing the mindset in seismic data acquisition: The Leading Edge, 27, 924−938.
[4] Beylkin, G., 1985, Imaging of discontinuities in the inverse scattering problem by inversion of a generalize Radon transform: Journal of Mathematical Physics, 26, 99−108.
[5] Casasanta, L., Xue, Z., and Gray, S. H., 2015, Converted wave RTM using lowrank wavefield extrapolation: 77th Annual International Meeting, EAGE, Extended Abstracts, N116.
[6] Cheng, C. L., 2015, Key technique and application of structure oriented filter for seismic wave field: PhD Thesis, Jilin University.
[7] Dai, W., Fowler, P., and Schuster, G. T., 2012, Multi-source least-squares reverse time migration: Geophysical Prospecting, 60, 681−695.
[8] Dai, W., and Schuster, G. T., 2009, Least-squares migration of simultaneous data with a deblurring filter: 79th Annual International Meeting, SEG, Expanded Abstracts, 2990-2994.
[9] Dai, W., and Schuster, G. T., 2013, Plane-wave least-squares reverse time migration: Geophysics, 78(4), S165−S177.
[10] Fomel, S., 2002, Applications of plane-wave destruction filters: Geophysics, 67(6), 1946−1960.
[11] Fomel, S., 2007, Shaping regularization in geophysical estimation problems: Geophysics, 72(2), R29-R36.
[12] Fomel, S., 2010, Predictive painting of 3D seismic volumes: Geophysics, 75(4), A25−A30.
[13] Hou, J., and Symes, W. W., 2015, Accelerating extended least-squares migration with weighted conjugate gradient iteration: 85th Annual International Meeting, SEG, Expanded Abstracts, 4243-4248.
[14] Huang, J. P., Li, C., Li, Q. Y., et al., 2015, Least-squares reverse time migration with static plane-wave encoding:Chinese J. Geophys. (in Chinese), 58(6), 2046−2056.
[15] Huang, J. P., Xue, Z. G., Bu, C. C., et al., 2014, The study of least-squares migration method based on split-step DSR: Journal of Jilin University, Earth Science Edition, 44(1), 369−374.
[16] Huang, Y., and Schuster, G. T., 2012, Multisource least-squares migration of marine streamer data with frequency-division encoding: Geophysical Prospecting, 60, 663-680.
[17] Kuehl, H., and Sacchi, M. D., 2003, Least-squares wave-equation migration for AVP/AVA inversion: Geophysics, 68, 262-273.
[18] Lailly, P., 1983, The seismic inverse problem as a sequence of before stack migrations: Conference on Inverse Scattering: Theory and Application, Society for Industrial and Applied Mathematics, Philadelphia, PA, 15(2), 206−220.
[19] Lambare, G., Virieus, J., Madariaga, R., et al., 1992, Iterative Asymptotic Inversion in the Acoustic Approximation: Geophysics, 57, 1138−1154.
[20] Li, Z. C., Guo, Z. B., and Tian, K., 2014, Least-squares reverse time migration in visco-acoustic medium: Chinese J. Geophys. (in Chinese), 57(1), 214−228.
[21] Liu, Y., Fomel, S., and Liu, G., 2010, Nonlinear structure-enhancing filtering using plane-wave prediction: Geophysical Prospecting, 58, 415-427.
[22] Liu, Y. J., Li, Z. C., Wu, D., et al., 2013a, The research on local slope constrained least-squares migration: Chinese J. Geophys. (in Chinese), 56(3), 1003−1011.
[23] Liu, Y, J., Symes, W. W., and Li, Z. C., 2013b, Multisource least-squares extended reverse time migration with preconditioning guided gradient method: 83rd Annual International Meeting, SEG, Expanded Abstracts, 3709−3715.
[24] Liu, Y. S., Teng, J. W., Xu, T., et al., 2016, An efficient step-length formula for correlative least-squares reverse time migration: Geophysics, 81(4), S221−S238.
[25] Liu, Y., Wang, D., Liu, C., et al., 2014, Structure-oriented filtering and fault detection based on nonstationary similarity: Chinese J. Geophys. (in Chinese), 57(4), 1177−1187.
[26] Lu, X. T., Han, L. G., Zhang, P., et al., 2015, Direct migration method of multi-source blended data based on total variation: Chinese J. Geophys. (in Chinese), 58(9), 3335−3345.
[27] McMechan, G. A., 1983, Migration by extrapolation of time-dependent boundary values: Geophysical Prospecting, 31(3), 413-420.
[28] Nemeth, T., Wu, C., and Schuster, G.T., 1999, Least-squares migration of incomplete reflection data: Geophysics, 64(1), 208-221.
[29] Romero, L. A., Ghiglia, D. C., Ober, C. C., and Morton, S. A., 2000, Phase encoding of shot records in prestack migration: Geophysics, 65, 426-436.
[30] Schuster, G. T., Wang, X., Huang, Y., Dai, W., et al., 2011, Theory of multisource crosstalk reduction by phase-encoded statics: Geophysical Journal International, 184(3), 1289-1303.
[31] Tang, Y., and Biondi, B., 2009, Least-squares migration inversion of blended data: 79th Annual International Meeting, SEG, Expanded Abstracts, 2859-2863.
[32] Wang, J., Kuehl, H., and Sacchi, M. D., 2005, High-resolution wave-equation AVA imaging: Algorithm and tests with a data set from the Western Canadian Sedimentary Basin: Geophysics, 70(5), S91-S99.
[33] Wang, J., and Sacchi, M. D., 2009, Structure constrained least-squares migration. 79th Annual International Meeting, SEG, Expanded Abstracts, 2763-2767.
[34] Wang, H. C., Chen, S. C., Chen, G. X., et al., 2014. Migration methods for blended seismic data of multi-source: Chinese J. Geophys. (in Chinese), 57(3), 918−931.
[35] Wang, H. C., Chen, S. C., Zhang, B., et al., 2013. Separation method for multi-source blended seismic data: Applied Geophysics, 10(3), 251−264.
[36] Whitmore, N. D., 1983, Iterative depth migration by backward time propagation: 53rd Annual International Meeting, SEG, Expanded Abstracts, 382-385.
[37] Xue, Z., Chen, Y., Fomel, S., et al., 2014, Imaging incomplete data and simultaneous-source data using least-squares reverse-time migration with shaping regularization: 84th Annual International Meeting, SEG, Expanded Abstracts, 3991-3996.
[38] Xue, Z., Chen, Y., Fomel, S., et al, 2016, Seismic imaging of incomplete data and simultaneous-source data using least-squares reverse time migration with shaping regularization: Geophysics, 81(1), S11-S20.
[39] Xue, Z., Fomel, S., and Sun, J., 2015, RTM interpolation using time-shift gathers: 85th Annual International Meeting, SEG, Expanded Abstracts, 2145-2148.
[40] Zhang, Y., Duan, L., and Xie, Y., 2013, A stable and practical implementation of least-squares reverse time migration: 83rd Annual International Meeting, SEG, Expanded Abstracts, 3716−3720.
[41] Zhang, Y., Sun, J., and Gray, S., 2007, Reverse-time migration: Amplitude and implementation issues: 77th Annual International Meeting, SEG, Expanded Abstracts, 2145-2148.
[1] 李闯,黄建平,李振春,王蓉蓉. 基于奇异值谱约束的叠前平面波最小二乘逆时偏移方法[J]. 应用地球物理, 2017, 14(1): 73-86.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司