APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (2): 393-405    DOI: 10.1007/s11770-016-0556-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
陆相泥页岩含气量测井资料预测新方法研究
李生杰1,2,崔哲1,2,姜振学1,3,邵雨4,廖伟5,李力5
1. 中国石油大学油气资源与探测国家重点实验室,北京,102249
2. 中国石油大学CNPC物探重点实验室,北京,102249
3. 中国石油大学(北京)非常规天然气研究院
4. 中国石油 新疆油田分公司 勘探开发研究院,新疆 克拉玛依 834000
5. 中国石油 新疆油田分公司 采气一厂,新疆 克拉玛依 834000
New method for prediction of shale gas content in continental shale formation using well logs
Li Sheng-Jie1,2, Cui Zhe1,2, Jiang Zhen-Xue1,3, Shao Yu4, Liao Wei5, and Li Li5
New method for prediction of shale gas content in continental shale formation using well logs
 全文: PDF (1113 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 页岩气藏实现经济开采的关键条件之一是其具备充足的含气量。本文针对延长地区(以下简称YC)陆相非均质泥页岩,开展了泥页岩含气性实验测试及理论分析,确定了影响泥页岩含气量的关键因素,根据泥页岩体积模型及气体状态方程,确定了泥页岩游离气预测模型。由等温吸附实验确定的Langmuir体积常数和压力常数受到实验温度和压力条件及样品性质的限制,难以应用于实际泥页岩的吸附气量预测。为此,根据实验结果与热动力学原理,本文研究了地层温度、总有机碳含量(TOC)以及矿物组分对Langmuir体积常数和压力常数的作用,分别建立了Langmuir压力常数温度校正方程和Langmuir体积常数的温度、TOC及石英含量校正方程,将等温吸附试验建立的Langmuir方程的应用范围外推至任意储层温度、压力及岩性条件;建立了利用测井资料预测泥页岩含气量的计算方法,并将该方法应用于延长陆相泥页岩地层含气量预测分析中,预测结果经实验数据标定,表明本文所述方法具有较高精度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词游离气   吸附气   体积模型   Langmuir方程   等温吸附     
Abstract: Shale needs to contain a sufficient amount of gas to make it viable for exploitation. The continental heterogeneous shale formation in the Yan-chang (YC) area is investigated by firstly measuring the shale gas content in a laboratory and then investigating use of a theoretical prediction model. Key factors controlling the shale gas content are determined, and a prediction model for free gas content is established according to the equation of gas state and a new petrophysical volume model. Application of the Langmuir volume constant and pressure constant obtained from results of adsorption isotherms is found to be limited because these constants are greatly affected by experimental temperature and pressures. Therefore, using measurements of adsorption isotherms and thermodynamic theory, the influence of temperature, total organic carbon (TOC), and mineralogy on Langmuir volume constants and pressure constants are investigated in detail. A prediction model for the Langmuir pressure constant with a correction of temperatures is then established, and a prediction model for the Langmuir volume constant with correction of temperature, TOC, and quartz contents is also proposed. Using these corrected Langmuir constants, application of the Langmuir model determined using experimental adsorption isotherms is extrapolated to reservoir temperature, pressure, and lithological conditions, and a method for the prediction of shale gas content using well logs is established. Finally, this method is successfully applied to predict the shale gas content of the continental shale formation in the YC area, and practical application is shown to deliver good results with high precision.
Key wordsfree gas   adsorbed gas   petrophysical volume model   Langmuir model   adsorption isotherms   
收稿日期: 2015-02-09;
基金资助:

本研究由国家自然科学基金项目(编号:41274136)资助。

引用本文:   
. 陆相泥页岩含气量测井资料预测新方法研究[J]. 应用地球物理, 2016, 13(2): 393-405.
. New method for prediction of shale gas content in continental shale formation using well logs[J]. APPLIED GEOPHYSICS, 2016, 13(2): 393-405.
 
[1] Brunauer, S., Emmett, P. H., and Teller, E., 1938, Adsorption of Gases in Multimolecular Layers: J. Amer. Chem. Soc., 60, 309.
[2] Clarkson, C. R., Bustin, R. M., and Levy, J. H., 1997, Application of the Mono-multilayer and Adsorption Potential Theories to Coal Methane Adsorption Isotherms at Elevated Temperature and Pressure: Carbon, 35(2), 1689−1705.
[3] Clarkson, C. R., and Beierle, J. J., 2011, Integration of Microseismic and other post-fracture surveillance with production analysis: A tight gas study. Journal of Natural Gas Science and Engineering, 3, 382−401.
[4] Decker, A. D., Hill, D. G., and Wicks, D. E., 1993, Log-Based Gas Content and Resource Estimates for the Antrim Shale, Michigan Basin: SPE Annual Technical Conference and Exhibition, 12-14 April, Denver, USA, SPE25910, 659−669.
[5] Ji, W., Song, Y., Jiang, Z., Wang, X., Bai, Y., and Xing, J., 2014, Geological controls and estimation algorithms of lacustrine shale gas adsorption capacity: a case study of the Triassic strata in the southeastern Ordos Basin, China. Int. J. Coal Geol. 134, 61−73.
[6] Kuila, U., and Prasad, M., 2013, Specific Surface Area and Pore-Size Distribution in Clays and Shales: Geophysical Prospecting, 61(4), 341−362.
[7] Langmuir, I., 1918, The Adsorption of Gases on Plane Surface of Glass, Mica and Platinum: Journal of the American Chemical Society, 40, 1361−1403.
[8] Lewis, R., Ingraham, D., Pearcy, M., Williamson, J., Sawyer, W., and Frantz, J., 2004, New Evaluation Techniques for Gas Shale Reservoirs: Reservoir Symposium. Houston:Schlumberger 2004.
[9] Li, Y. X., Qiao, D. W., Jiang, W. L., and Zhang, C. H., 2011, Gas content of gas-bearing shale and its geological evaluation summary: Geological Bulletin of China, 30(2/3), 308−317.
[10] Nie, H. K., and Zhang, J. C., 2012, Shale gas Accumulation Conditions and Gas Content Calculation: A Case Study of Sichuan Basin and Its Periphery in the Lower Paleozoic: Acta Geologica Sinica, 86(2), 349−361.
[11] Passey, Q. R., Bohacs, K. M., Esch, W. L., Klimentidis, R., and Sinha, S., 2010, From Oil-Prone Source Rock to Gas-Producing Shale Reservoir- Geologic and Petrophysical Characterization of Unconvertional Shale-Gas Reservoirs: CPS/SPE International oil and Gas Conference and Exhibition China held in Bejing, China 8-10 June 2010, SPE 131350.
[12] Polanyi, M., 1963, The Potential Theory of Adsorption: Science, 141, 1010−1013.
[13] Rexer, T. F., Benham, M. J., Aplin, A. C., and Thomas, K. M., 2013, Methane adsorption on shale under simulated geological temperature and pressure conditions. Energy & Fuels 27, 3099−3109.
[14] Shtepani, E., Noll, L., Elrod, L., and Jacobs, P., 2010, A New Regression-Based Method for Accurate Measurement of Coal and Shale Gas Content: SPE 115405, 359−364.
[15] Silin, D., and Kneafsey, T., 2012, Shale Gas-Nanometer-Scale-Observation and Well Modeling: Journal of Canadian Petroleum Technology, 51(6), 464−475.
[16] Slatt, R. M., and O’Brien, N. R., 2011, Pore types in the Barnett and Woodford gas shale: contribution to understanding gas storage and migration pathways in fine-grained rock: AAPG Bulletin, 95(12), 2017−2030.
[17] Sondergeld, C. H., Newsham, K. E., Comisky, J. T., Rice, M. C., and Rai, C. S., 2010, Petrophysical Considerations in Evaluating Producing Shale Gas Resources: SPE Unconventional Gas Conference, Pittsburgh, PA, 23−25 February, Paper 131768.
[18] Tiab, D., and Donaldson, E. C., 2004, Petrophysics: theory and practice of measuring reassuring reservoir rock and fluid transport properties: Gulf Professional Publishing, USA, 866−870.
[19] Wang, J. G., Li, Z. G., Gu, D. H., Zhu, Z., and Song, L., 2014, The Calculation Model for Shale Absorption Gas Content Considering the Organic Content and Its Application: Science Technology and Engineering, 14(22), 28−33.
[20] Worthington, P. F., 2011, The direction of petrophysics- a perstective to 2020: Petrophysics, 52(4), 261−274.
[21] Yang, F., Ning, Z., Zhang, R., Zhao, H., and Krooss, B. M., 2015, Investigations on the methane sorption capacity of marine shales from Sichuan Basin, China. Int. J. Coal Geol. 146, 104−117.
[22] Zhang, T., Ellis, G., Ruppel, S., Milliken, K., and Yang, R., 2012, Effect of Organic-matter type and thermal maturity on methane adsorption in shale-gas system: Organic Geochemistry, 47, 120−131.
[23] Zhou, C. N., Dong, D. Z., Wang, S. J., Li, J. Z., Li, X. J., Wang, Y. M., Li, D. H., and Cheng, K. M., 2010, Geological characteristics, formation mechanism and resource potential of shale gas in China: Petroleum Exploration and Development, 37(6), 641−653.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司